|
|
A composite micromotor driven by self-thermophoresis and Brownian rectification |
Xin Lou(娄辛)1,2, Nan Yu(余楠)1,2,3, Ke Chen(陈科)1,2,4, Xin Zhou(周昕)1,5, Rudolf Podgornik1,2,5,†, and Mingcheng Yang(杨明成)1,2,4,‡ |
1 University of Chinese Academy of Sciences, Beijing 100049, China; 2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China |
|
|
Abstract Brownian motors and self-phoretic microswimmers are two typical micromotors, for which thermal fluctuations play different roles. Brownian motors utilize thermal noise to acquire unidirectional motion, while thermal fluctuations randomize the self-propulsion of self-phoretic microswimmers. Here we perform mesoscale simulations to study a composite micromotor composed of a self-thermophoretic Janus particle under a time-modulated external ratchet potential. The composite motor exhibits a unidirectional transport, whose direction can be reversed by tuning the modulation frequency of the external potential. The maximum transport capability is close to the superposition of the drift speed of the pure Brownian motor and the self-propelling speed of the pure self-thermophoretic particle. Moreover, the hydrodynamic effect influences the orientation of the Janus particle in the ratched potential, hence also the performance of the composite motor. Our work thus provides an enlightening attempt to actively exploit inevitable thermal fluctuations in the implementation of the self-phoretic microswimmers.
|
Received: 17 August 2021
Revised: 06 September 2021
Accepted manuscript online: 16 September 2021
|
PACS:
|
47.57.-s
|
(Complex fluids and colloidal systems)
|
|
66.10.cd
|
(Thermal diffusion and diffusive energy transport)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397 and 11674365). |
Corresponding Authors:
Rudolf Podgornik, Mingcheng Yang
E-mail: rudipod@gmail.com;mcyang@iphy.ac.cn
|
Cite this article:
Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成) A composite micromotor driven by self-thermophoresis and Brownian rectification 2021 Chin. Phys. B 30 114702
|
[1] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323 [2] Reichhardt C J O and Reichhardt C 2017 Nat. Phys. 13 10 [3] Rubenstein M, Cornejo A and Nagpal R 2014 Science 345 795 [4] Valentini G, Ferrante E, Hamann H and Dorigo M 2016 Auton Agent Multi-Agent. Syst. 30 553 [5] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95 [6] Morin A, Desreumaux N, Caussin J B and Bartolo D 2017 Nat. Phys. 13 63 [7] Shin J, Cherstvy A G, Kim W K and Metzler R 2015 New J. Phys. 17 113008 [8] Wu W X, Zheng Z G, Song Y L, Han Y R, Sun Z C and Li C P 2015 Chin. Phys. B 29 090503 [9] Lai L, Zhou X X, Ma H and Luo M K 2015 Acta. Phys. Sin. 64 120501 (in Chinese) [10] Astumian R D 1997 Science 276 917 [11] Van den Broeck C, Kawai R and Meurs P 2004 Phys. Rev. Lett. 93 090601 [12] Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387 [13] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Special Topics 202 1 [14] Ghadiri M R, Granja J R and Buehler L K 1994 Nature 369 301 [15] Coy D L, Hancock W O, Wagenbach M and Howard J 1999 Nat. Cell Biol. 1 288 [16] Verhey K J and Hammond J W 2009 Nat. Rev. Mol. Cell Biol. 10 765 [17] Hirokawa N and Noda Y 2008 Physiol. Rev. 88 1089 [18] Carter A P, Garbarino J E, Wilson-Kubalek E M, Shipley W E, Cho C, Milligan R A, Vale R D and Gibbons IR 2008 Science 322 1691 [19] Kardon J R and Vale R D 2009 Nat. Rev. Mol. Cell Biol. 10 854 [20] Huang M, Kapral R, Mikhailov A S and Chen H 2013 J. Chem. Phys. 138 05B613_1 [21] Koyano Y, Kitahata H and Mikhailov A S 2016 Phys. Rev. E 93 022416 [22] Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A and Bibette J 2005 Nature 437 862 [23] Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev. Lett. 99 048102 [24] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006 [25] Golestanian R, Liverpool T B and Ajdari A 2007 New J. Phys. 9 126 [26] Jiang H, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302 [27] Bregulla A P, Yang H and Cichos F 2014 ACS Nano 6542 [28] Xuan M, Wu Z, Shao J, Dai L, Si T and He Q 2016 J. Am. Chem. Soc. 138 6492 [29] Wan M, Reichhardt C J O, Nussinov Z and Reichhardt C 2008 Phys. Rev. Lett. 101 018102 [30] Ghosh P K, Misko V R, Marchesoni F and Nori F 2013 Phys. Rev. Lett. 110 268301 [31] Reichhardt C J O and Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51 [32] Liao J, Huang X and Ai B 2018 Soft Matter 14 7850 [33] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605 [34] Padding J and Louis A A 2006 Phys. Rev. E 74 031402 [35] Kapral R 2008 Adv. Chem. Phys. 140 89 [36] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1 [37] Ryder J F 2005 Mesoscopic simulations of complex fluids (University of Oxford) [38] Lou X, Yu N, Liu R, Chen K and Yang M 2018 Soft Matter 14 1319 [39] Yu N, Lou X, Chen K and Yang M 2019 Soft Matter 15 408 [40] Yang M, Wysocki A and Ripoll M 2014 Soft Matter 10 6208 [41] Rousselet J, Salome L, Ajdari A and Prostt J 1994 Nature 370 446 [42] Faucheux L P, Bourdieu L, Kaplan P D and Libchaber A J 1995 Phys. Rev. Lett. 74 1504 [43] Bader J S, Hammond R W, Henck S A, Deem M W, McDermott G A, Bustillo J M, Simpson J W, Mulhern G T and Rothberg J M 1999 Proc. Natl. Acad. Sci. USA 96 13165 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|