Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114702    DOI: 10.1088/1674-1056/ac2727
RAPID COMMUNICATION Prev   Next  

A composite micromotor driven by self-thermophoresis and Brownian rectification

Xin Lou(娄辛)1,2, Nan Yu(余楠)1,2,3, Ke Chen(陈科)1,2,4, Xin Zhou(周昕)1,5, Rudolf Podgornik1,2,5,†, and Mingcheng Yang(杨明成)1,2,4,‡
1 University of Chinese Academy of Sciences, Beijing 100049, China;
2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Abstract  Brownian motors and self-phoretic microswimmers are two typical micromotors, for which thermal fluctuations play different roles. Brownian motors utilize thermal noise to acquire unidirectional motion, while thermal fluctuations randomize the self-propulsion of self-phoretic microswimmers. Here we perform mesoscale simulations to study a composite micromotor composed of a self-thermophoretic Janus particle under a time-modulated external ratchet potential. The composite motor exhibits a unidirectional transport, whose direction can be reversed by tuning the modulation frequency of the external potential. The maximum transport capability is close to the superposition of the drift speed of the pure Brownian motor and the self-propelling speed of the pure self-thermophoretic particle. Moreover, the hydrodynamic effect influences the orientation of the Janus particle in the ratched potential, hence also the performance of the composite motor. Our work thus provides an enlightening attempt to actively exploit inevitable thermal fluctuations in the implementation of the self-phoretic microswimmers.
Keywords:  Brownian motors      self-phoretic microswimmers      thermal noise      hydrodynamic effect  
Received:  17 August 2021      Revised:  06 September 2021      Accepted manuscript online:  16 September 2021
PACS:  47.57.-s (Complex fluids and colloidal systems)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397 and 11674365).
Corresponding Authors:  Rudolf Podgornik, Mingcheng Yang     E-mail:  rudipod@gmail.com;mcyang@iphy.ac.cn

Cite this article: 

Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成) A composite micromotor driven by self-thermophoresis and Brownian rectification 2021 Chin. Phys. B 30 114702

[1] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[2] Reichhardt C J O and Reichhardt C 2017 Nat. Phys. 13 10
[3] Rubenstein M, Cornejo A and Nagpal R 2014 Science 345 795
[4] Valentini G, Ferrante E, Hamann H and Dorigo M 2016 Auton Agent Multi-Agent. Syst. 30 553
[5] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95
[6] Morin A, Desreumaux N, Caussin J B and Bartolo D 2017 Nat. Phys. 13 63
[7] Shin J, Cherstvy A G, Kim W K and Metzler R 2015 New J. Phys. 17 113008
[8] Wu W X, Zheng Z G, Song Y L, Han Y R, Sun Z C and Li C P 2015 Chin. Phys. B 29 090503
[9] Lai L, Zhou X X, Ma H and Luo M K 2015 Acta. Phys. Sin. 64 120501 (in Chinese)
[10] Astumian R D 1997 Science 276 917
[11] Van den Broeck C, Kawai R and Meurs P 2004 Phys. Rev. Lett. 93 090601
[12] Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387
[13] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Special Topics 202 1
[14] Ghadiri M R, Granja J R and Buehler L K 1994 Nature 369 301
[15] Coy D L, Hancock W O, Wagenbach M and Howard J 1999 Nat. Cell Biol. 1 288
[16] Verhey K J and Hammond J W 2009 Nat. Rev. Mol. Cell Biol. 10 765
[17] Hirokawa N and Noda Y 2008 Physiol. Rev. 88 1089
[18] Carter A P, Garbarino J E, Wilson-Kubalek E M, Shipley W E, Cho C, Milligan R A, Vale R D and Gibbons IR 2008 Science 322 1691
[19] Kardon J R and Vale R D 2009 Nat. Rev. Mol. Cell Biol. 10 854
[20] Huang M, Kapral R, Mikhailov A S and Chen H 2013 J. Chem. Phys. 138 05B613_1
[21] Koyano Y, Kitahata H and Mikhailov A S 2016 Phys. Rev. E 93 022416
[22] Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A and Bibette J 2005 Nature 437 862
[23] Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev. Lett. 99 048102
[24] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[25] Golestanian R, Liverpool T B and Ajdari A 2007 New J. Phys. 9 126
[26] Jiang H, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
[27] Bregulla A P, Yang H and Cichos F 2014 ACS Nano 6542
[28] Xuan M, Wu Z, Shao J, Dai L, Si T and He Q 2016 J. Am. Chem. Soc. 138 6492
[29] Wan M, Reichhardt C J O, Nussinov Z and Reichhardt C 2008 Phys. Rev. Lett. 101 018102
[30] Ghosh P K, Misko V R, Marchesoni F and Nori F 2013 Phys. Rev. Lett. 110 268301
[31] Reichhardt C J O and Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51
[32] Liao J, Huang X and Ai B 2018 Soft Matter 14 7850
[33] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[34] Padding J and Louis A A 2006 Phys. Rev. E 74 031402
[35] Kapral R 2008 Adv. Chem. Phys. 140 89
[36] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1
[37] Ryder J F 2005 Mesoscopic simulations of complex fluids (University of Oxford)
[38] Lou X, Yu N, Liu R, Chen K and Yang M 2018 Soft Matter 14 1319
[39] Yu N, Lou X, Chen K and Yang M 2019 Soft Matter 15 408
[40] Yang M, Wysocki A and Ripoll M 2014 Soft Matter 10 6208
[41] Rousselet J, Salome L, Ajdari A and Prostt J 1994 Nature 370 446
[42] Faucheux L P, Bourdieu L, Kaplan P D and Libchaber A J 1995 Phys. Rev. Lett. 74 1504
[43] Bader J S, Hammond R W, Henck S A, Deem M W, McDermott G A, Bustillo J M, Simpson J W, Mulhern G T and Rothberg J M 1999 Proc. Natl. Acad. Sci. USA 96 13165
[1] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[2] Directed transport of coupled Brownian motors in a two-dimensional traveling-wave potential
Wei-Xia Wu(吴魏霞), Zhi-Gang Zheng(郑志刚), Yan-Li Song(宋艳丽), Ying-Rong Han(韩英荣), Zhi-Cheng Sun(孙志成), Chen-Pu Li(李晨璞). Chin. Phys. B, 2020, 29(9): 090503.
[3] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[4] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[5] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[6] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪). Chin. Phys. B, 2015, 24(3): 030401.
[7] Two-dimensional model of elastically coupled molecular motors
Zhang Hong-Wei(张红卫), Wen Shu-Tang(文书堂), Chen Gai-Rong(陈改荣), Li Yu-Xiao(李玉晓), Cao Zhong-Xing(曹中兴), and Li Wei(李伟) . Chin. Phys. B, 2012, 21(3): 038701.
[8] Feedback control of two-headed Brownian motors in flashing ratchet potential
Zhao A-Ke(赵阿可), Zhang Hong-Wei(张红卫), and Li Yu-Xiao(李玉晓). Chin. Phys. B, 2010, 19(11): 110506.
No Suggested Reading articles found!