Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038701    DOI: 10.1088/1674-1056/26/3/038701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer

Zicong Zhou(周子聪)1, Yanting Wang(王延颋)2,3
1 Department of Physics, Tamkang University, New Taipei City, Taiwan, China;
2 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end distance RN2Nβ at large N, with N being the number of monomers. Both β and proportional constant are dependent on the reduced bending rigidity κ and intrinsic curvature c. The larger the c, the smaller the proportional constant, and 1.5≥β≥1. Up to a moderate κ=κc, or down to a moderate temperature T=Tc, β=1.5, the same as that of a self-avoiding random walk, and the larger the intrinsic curvature, the smaller the κc. However, at a large κ or a low temperature, β is close to 1, and the conformation of the biopolymer can be more compact than that of a random walk. There is an intermediate regime with 1.5 > β > 1 and the transition from β=1.5 to β=1 is smooth. The specific heat of the system increases smoothly with increasing κ or there is no peak in the specific heat. Therefore, a nonvanishing intrinsic curvature seriously affects the thermal properties of a semiflexible biopolymer, but there is no phase transition in the system.

Keywords:  thermal property      semiflexible biopolymer      intrinsic curvature  
Received:  17 November 2016      Revised:  09 December 2016      Accepted manuscript online: 
PACS:  87.16.Ka (Filaments, microtubules, their networks, and supramolecular assemblies)  
  87.15.hp (Conformational changes)  
  87.15.ak (Monte Carlo simulations)  
  87.15.Zg (Phase transitions)  
Fund: 

Project supported by the Minister of Science and Technology of China

Corresponding Authors:  Zicong Zhou     E-mail:  zzhou@mail.tku.edu.tw

Cite this article: 

Zicong Zhou(周子聪), Yanting Wang(王延颋) Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer 2017 Chin. Phys. B 26 038701

[1] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Clearendon Press) p. 26
[2] Domb C 1963 J. Chem. Phys. 38 2957
[3] McKenzie D S 1976 Phys. Rep. 27C 35
[4] de Gennes P G 1979 Scaling Concept in Polymer Physics (Ithaca: Cornell UP)
[5] Essam J W 1980 Rep. Prog. Phys. 43 833
[6] Landau D P and Binder K 2005 A Guide to Monte Carlo Simulation in Statistical Physics (2nd Edn.) (Cambridge: Cambridge University Press) pp. 78 and 85
[7] Bhattacharjee S M, Giacometti A and Maritan A 2013 J. Phys.: Condens. Matter 25 503101
[8] Pincus P 1976 Macromolecules 9 386
[9] Daoud M and de Gennes P G 1976 J. Phys. 38 85
[10] Brochard-Wyart F 1993 Europhys. Lett. 23 105
[11] Brochard-Wyart F, Hervet H and Pincus P 1994 Europhys. Lett. 26 511
[12] Lai P Y 1995 Physica A 221 233
[13] Lai P Y 1996 Phys. Rev. E 53 3819
[14] Lai P Y 1998 Phys. Rev. E 58 6222
[15] Marko J F and Siggia E D 1994 Science 265 506
[16] Bustamante C, Marko J F, Siggia E D and Smith S 1994 Science 265 1599
[17] Marko J F and Siggia E D 1995 Macromolecules 28 8759
[18] Bouchiat C, Wang M D, Allemand J F, Strick T, Block S M and Croquette V 1999 Biophys. J. 76 409
[19] Drew H R and Travers A A 1985 J. Mol. Biol. 186 773
[20] Dlakic M, Park K, Griffith J D, Harvey S C and Harrington R E 1996 J. Biol. Chem. 271 17911
[21] Han W, Lindsay S M, Dlakic M and Harrington R E 1997 Nature 386 563
[22] Han W, Dlakic M, Zhu Y J, Lindsay S M and Harrington R E 1997 Proc. Natl. Acad. Sci. USA 94 10565
[23] Moukhtar J, Fontaine E, Faivre-Moskalenko C and Arnéodo A 2007 Phys. Rev. Lett. 98 178101
[24] Zhou Z, Lin F T, Hung C Y, Wu H Y and Chen B H 2014 J. Phys. Soc. Jpn. 83 044802
[25] Zhou Z, Lin F T and Chen B H 2015 Chin. Phys. B 24 028701
[26] Zhou Z and Joós B 2016 Chin. Phys. B 25 088701
[27] Hernandez L I, Ramnarain S P, Huff E J and Wang Y K 1993 Science 262 110
[28] Arnéodo A, Bacry E, Graves P V and Muzy J F 1995 Phys. Rev. Lett. 74 3293
[29] Vaillant C, Audit B and Arnéodo A 2005 Phys. Rev. Lett. 95 068101
[30] Maier B, Seifert U and Radler J O 2002 Europhys. Lett. 60 622
[31] Marenduzzo D, Maritan A, Rosa A and Seno F 2003 Phys. Rev. Lett. 90 088301
[32] Rosa A, Marenduzzo D, Maritan A and Seno F 2003 Phys. Rev. E 67 041802
[33] Prasad A, Hori Y and Kondev J 2005 Phys. Rev. E 72 041918
[34] Kulić I M, Mohrbach H, Thaokar R and Schiessel H 2007 Phys. Rev. E 75 011913
[35] Zhou Z 2007 Phys. Rev. E 76 061913
[36] Zhou Z and Joós B 2009 Phys. Rev. E 80 061911
[1] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[2] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[3] Stretching instability of intrinsically curved semiflexible biopolymers: A lattice model approach
Zhou Zi-Cong (周子聪), Lin Fang-Ting (林方庭), Chen Bo-Han (陈柏翰). Chin. Phys. B, 2015, 24(2): 028701.
[4] Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides
Chen Dong (陈东). Chin. Phys. B, 2013, 22(12): 126301.
No Suggested Reading articles found!