Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057803    DOI: 10.1088/1674-1056/ab821f
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Single-shot measurement of THz pulses

Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫)
Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
Abstract  Terahertz (THz) waves have shown a broad prospect in the analysis of some dielectric materials because of their special properties. For the ultrafast irreversible processes, the THz single-shot measurement is a good choice. In this paper, a single-shot system is investigated, where a pump beam is used to generate THz pulses with high electrical field by optical rectification in LiNbO3, the probe beam with wavefront tilted by a blazed grating is used for single-shot measurement. The time window is up to 90 ps, the signal to noise ratio is 2000:1, the spectrum covers from 0.1 THz to about 2.0 THz, and the spectral resolution is 0.011 THz. The single-shot measurement result agrees well with that of a traditional electrical-optic sampling method.
Keywords:  terahertz waves      tilted wavefront      single-shot measurement  
Received:  10 March 2020      Revised:  16 March 2020      Accepted manuscript online: 
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61427814 and 61575161), the National Key Research and Development Program of China (Grant No. 2017YFA0701005), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JZ-04).
Corresponding Authors:  Wei Shi     E-mail:  swshi@mail.xaut.edu.cn

Cite this article: 

Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫) Single-shot measurement of THz pulses 2020 Chin. Phys. B 29 057803

[1] Hu M, Zhai G, Xie R, Min X, Li Q, Yang X and Zhang W 2020 IEEE Trans. Broadcast. 66 140
[2] Gong A, Qiu Y, Chen X, Zhao Z, Xia L and Shao Y 2019 Appl. Spectrosc. Rev. 1
[3] Wan M, Healy J J and Sheridan J T 2020 Opt. & Laser Technol. 122 105859
[4] Wang D, Li B, Rong L, Xu Z, Zhao Y, Zhao J, Wang Y and Zhai C 2019 Opt. Commun. 432 20
[5] Stubling E M, Rehn A, Siebrecht T, Bauckhage Y, Ohrstrom L, Eppenberger P, Balzer J C, Ruhli F and Koch M 2019 Sci. Rep. 9 3390
[6] Auston D H and Nuss M C 1988 IEEE J. Quantum Electronics 24 184
[7] Zielbauer J and Wegener M 1996 Appl. Phys. Lett. 68 1223
[8] Liu G, Chang C, Qiao Z, Wu K, Zhu Z, Cui G, Peng W, Tang Y, Li J and Fan C 2019 Adv. Funct. Mater. 29 1807862
[9] Kim K Y, Yellampalle B, Rodriguez G, Averitt R D, Taylor A J and Glownia J H 2006 Appl. Phys. Lett. 88 041123
[10] Shan J, Weling A S, Knoesel E, Bartels L, Bonn M, Nahata A, Reider G A and Heinz T F 2000 Opt. Lett. 25 426
[11] Kawada Y, Yasuda T, Nakanishi A, Takahashi H and Aoshima S 2009 Rev. Sci. Instrum. 80 113703
[12] Kawada Y, Yasuda T, Nakanishi A, Akiyama K and Takahashi H 2011 Opt. Express 19 11228
[13] Zhai Z H, Zhong S C, Li J, Zhu L G, Meng K, Li J, Liu Q, Peng Q X, Li Z R and Zhao J H 2016 Rev. Sci. Instrum. 87 095101
[14] Li Z R, Zhai Z H, Zhu L G, Zhong S C, Li J, Peng Q X and Zhao J H 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), SEP 25-30, 2016, Copenhagen, DENMARK, p. 1
[15] Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106
[16] Zhong S C, Zhu Y, Du L H, Zhai Z H, Li J, Zhao J H, Li Z R and Zhu L G 2017 Opt. Express 25 17066
[17] Zhong S C, Li J, Zhai Z H, Zhu L G, Li J, Zhou P W, Zhao J H and Li Z R 2016 Opt. Express 24 14828
[1] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[2] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[3] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[4] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[7] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[8] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[9] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[10] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[11] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[12] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[13] Time-resolved spectroscopy for 5s'4D7/2 state transitions undergoing electron-ion recombination in femtosecond laser-produced copper plasma
Hai-Ying Song(宋海英), Hui Li(李辉), Yan-Jie Zhang(张艳杰), Peng Gu(谷鹏), Hai-Yun Liu(刘海云), Wei Li(李维), Xun Liu(刘勋), Shi-Bing Liu(刘世炳). Chin. Phys. B, 2017, 26(12): 124208.
[14] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[15] Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides
Dong Sun(孙栋), Jia-Wei Lai(赖佳伟), Jun-Chao Ma(马骏超), Qin-Sheng Wang(王钦生), Jing Liu (刘晶). Chin. Phys. B, 2017, 26(3): 037801.
No Suggested Reading articles found!