Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060204    DOI: 10.1088/1674-1056/27/6/060204
GENERAL Prev   Next  

Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching

Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈)
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  It has been proposed previously that the coherent detection of a terahertz (THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of this novel detection technology by simulating the motion of carriers in gallium arsenide (GaAs) by the ensemble Monte Carlo method. At room temperature, for a direct-current (DC) voltage of 20 kV/cm applied to the semiconductor (GaAs) and sampling time of 140 fs, the luminescence quenching phenomena induced by terahertz pulses with different center frequencies are studied. The results show that the quenching efficiency is independent of the THz frequency when the frequency is in a range of 0.1 THz-4 THz. However, when the frequency exceeds 4 THz, the efficiency decreases with the increase of frequency. Therefore, the frequency response range is 0.1 THz-4 THz. Moreover, when the sampling time is changed to 100 fs, the frequency response range is extended to be approximately 0.1 THz-5.6 THz. This study of the frequency-dependent characteristics of the luminescence response to the THz pulse can provide a theoretical basis for the exploration of THz detection technology.
Keywords:  frequency response range      terahertz-pulse coherent detection      time-resolved luminescence quenching      ensemble Monte Carlo method  
Received:  05 January 2018      Revised:  26 March 2018      Accepted manuscript online: 
PACS:  02.50.Ng (Distribution theory and Monte Carlo studies)  
  78.47.jd (Time resolved luminescence)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
Fund: Project supported by the Wuhan Applied Basic Research Project,China (Grant No.20140101010009),the National Natural Science Foundation of China (Grant Nos.61405063,61475054,11574105,and 61177095),the Hubei Science and Technology Agency Project,China (Grant No.2015BCE052),and the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029).
Corresponding Authors:  Zhen-Gang Yang     E-mail:

Cite this article: 

Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈) Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching 2018 Chin. Phys. B 27 060204

[1] Zhang C, Zhang Y and Zhao G 2008 Terahertz sensing and Imaging (Beijing:National Defense Industry Press) (in Chinese)
[2] Lee Y S 2008 Principles of Terahertz Science and Technology (New York:Springer)
[3] Xu J and Zhang X 2007 Terahertz Technology and Application (Beijing:Peking University Press) (in Chinese)
[4] Dai J, Xie X and Zhang X 2006 Phys. Rev. Lett. 97 103903
[5] Karpowicz N 2008 Appl. Phys. Lett. 92 011131
[6] Chu Z, Liu J and Wang K 2012 Opt. Lett. 37 1433
[7] Hirori H, Nagai M and Tanaka K 2010 Phys. Rev. B 81 081305
[8] Du L, Li Q, Li S X, Hu F R, Xiong X M, Li Y F, Zhang W T and Han J G 2016 Chin. Phys. B 25 027301
[9] Zhou W, Ji K and Chen H M 2017 Acta Phys. Sin. 66 05421 (in Chinese)
[10] Gong J L, Liu J S, Chu Z, Yang Z G, Wang K J and Yao J Q 2016 Chin. Phys. B 25 100203
[11] Rota L, Lugli P, Elsaesser T and Shah J 1993 Phys. Rev. B 47 4226
[12] Shah J, Devaud B, Damen T, Tsang W, Cossard A and Lugli P 1987 Phys. Rev. Lett. 59 2222
[13] Elsaesser T, Shah J, Rota L and Lugli P 1991 Phys. Rev. Lett. 66 1757
[14] Schoenlein R, Lin W, Brorson S, Ippen E and Fujimoto J 1988 Solid State Electron 31 443
[15] Morkoc H 2009 Handbook of Nitride Semiconductors and Devices, GaN-based Optical and Electronic Devices (New York:Wiley)
[16] Jacoboni C and Lugli P 1989 The Monte Carlo Method for Semiconductor Device Simulation (New York:Springer)
[17] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
[18] Brennan K 1999 The Physics of Semiconductors with Applications to Optoelectronic Devices (Cambridge:Cambridge University Press)
[19] Lugli P, Bordone P, Reggiani L, Rieger M, Kocevar P and Goodnick S M 1989 Phys. Rev. B 39 7852
[20] Collins C and Yu P 1983 Phys. Rev. B 27 2602
[21] Mickevicius R and Reklaitis A 1987 Solid State Commun. 64 1305
[22] Mickevicius R and Reklaitis A 1990 J. Phys.:Condens. Matter 2 7883
[23] Chu Z, Liu J and Liu J 2012 Appl. Phys. B 109 113
[24] Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M and Hegmann F A 2009 Opt. Express 17 9620
[1] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[2] Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts
Deli Wang(王德莉), Wei Xu(徐伟), Xudong Gu(谷旭东). Chin. Phys. B, 2019, 28(1): 010203.
[3] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[4] Linear and nonlinear characteristics of time-resolved photoluminescence modulation by terahertz pulse
Jiao-Li Gong(龚姣丽), Jin-Song Liu(刘劲松), Man Zhang(张曼), Zheng Chu(褚政), Zhen-Gang Yang(杨振刚), Ke-Jia Wang(王可嘉), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2017, 26(10): 100201.
[5] Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field
Jiao-Li Gong(龚姣丽), Jin-Song Liu(刘劲松), Zheng Chu(褚政), Zhen-Gang Yang(杨振刚), Ke-Jia Wang(王可嘉), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2016, 25(10): 100203.
[6] Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers
Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Zhao Fa-Zhan (赵发展), Liu Gang (刘刚), Han Zheng-Sheng (韩郑生), Geng Chao (耿超), Liu Jian-De (刘建德), Xi Kai (习凯), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹), Luo Jie (罗捷), Gu Song (古松), Liu Tian-Qi (刘天奇). Chin. Phys. B, 2013, 22(9): 096103.
[7] Statistical Elmore delay of RC interconnect tree
Dong Gang(董刚), Yang Yang(杨杨), Chai Chang-Chun(柴常春), and Yang Yin-Tang(杨银堂). Chin. Phys. B, 2010, 19(11): 110202.
[8] New expression of bimodal phase distributions in direct-method phasing of protein single-wavelength anomalous diffraction data
Zhang Tao (张涛), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2010, 19(8): 086102.
[9] Scattering correction method for panel detector based cone beam computed tomography system
Jia Peng-Xiang(贾鹏翔), Zhang Feng(张峰), Yan Bin(闫镔), and Bao Shang-Lian (包尚联). Chin. Phys. B, 2010, 19(8): 087802.
[10] Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭). Chin. Phys. B, 2010, 19(7): 070516.
[11] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[12] Experimental study of regional fractal speckle produced in large angle scattering
Song Hong-Sheng(宋洪胜), Cheng Chuan-Fu(程传福), Liu Yun-Yan(刘云燕), Liu Gui-Yuan(刘桂媛), and Teng Shu-Yun(滕树云). Chin. Phys. B, 2010, 19(7): 074204.
[13] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan (王月媛), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2010, 19(7): 074206.
[14] A new form of Tsallis distribution based on the probabilistically independent postulate
Du Jiu-Lin(杜九林). Chin. Phys. B, 2010, 19(7): 070501.
[15] Effects of average degree of network on an order-disorder transition in opinion dynamics
Feng Cun-Fang(冯存芳), Guan Jian-Yue(关剑月), Wu Zhi-Xi(吴枝喜), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2010, 19(6): 060203.
No Suggested Reading articles found!