Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064208    DOI: 10.1088/1674-1056/ac3737
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultrafast plasmon dynamics in asymmetric gold nanodimers

Bereket Dalga Dana1, Alemayehu Nana Koya2, Xiaowei Song(宋晓伟)1,†, and Jingquan Lin(林景全)1,‡
1 School of Science, Changchun University of Science and Technology, Changchun 130022, China;
2 Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, P. O. Box 138, Wlaita Sodo, Ethiopia
Abstract  We theoretically investigate the effect of symmetry breaking on the ultrafast plasmon responses of Au nanodisk (ND) dimers by varying the diameter of one of the constituent nanodisks. In the case of a single ultrafast laser pulse, we demonstrate that the ultrafast responses of Au ND homodimer can be significantly modified due to the effect of symmetry breaking. The symmetric dimer shows a single broad spectral peak, whereas the size-asymmetric dimer shows three spectral peaks. The first system displays at most one temporal maximum and no beats in ultrafast temporal, whereas the second system may have three temporal maxima and two beats due to a combination of broken symmetry and the coherent superposition between various plasmon modes induced by the ultra-short laser pulse. Moreover, the shape of temporal dynamics of the size-asymmetric dimer is significantly deformed due to the excitation of local plasmon modes with different wavelength components. Furthermore, the decay time of the amplitude of the local field is longer and oscillates with a high frequency due to the narrower linewidth and red-shifted spectral peaks. We show that the ultrafast plasmon responses of both dimers can be controlled by varying the relative phase and time delays between a pair of two pulses. Our results will open new paths to understanding ultrafast plasmon responses in asymmetric heterodimers with suitable properties for different applications.
Keywords:  ultrafast plasmon dynamics      coherent control      spectral intensity      temporal maximum  
Received:  20 August 2021      Revised:  27 October 2021      Accepted manuscript online:  06 November 2021
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.70.-g (Interactions of particles and radiation with matter)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850109 and 61775021), "111" Project of China (Grant No. D17017), Key Laboratory of Ultrafast and Extreme Ultraviolet Optics of Jilin Province, and Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology.
Corresponding Authors:  Xiaowei Song, Jingquan Lin     E-mail:  songxiaowei@cust.edu.cn;linjingquan@cust.edu.cn

Cite this article: 

Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全) Ultrafast plasmon dynamics in asymmetric gold nanodimers 2022 Chin. Phys. B 31 064208

[1] Koya A N, Cunha J, Guo T L, Toma A, Garoli D, et al. 2020 Advanced Optical Materials 8 1901481
[2] Maccaferri N, Barbillon G, Koya A N, Lu G, Acuna G P, et al. 2021 Nanoscale Adv. 3 633
[3] Koya A N, Zhu X, Ohannesian N, Yanik A A, Alabastri A, et al. 2021 ACS Nano 15 6038
[4] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem B 107 668
[5] Karatay A, Küçüköz B, Pekdemir S, Onses M S and Elmali A 2017 Opt. Mater. 73 83
[6] Måsell E, Losquin A, Svärd R, Miranda M, Guo C, et al. 2015 Nano.Lett 15 6601
[7] Novko D 2021 New. J. Phys. 23 043023
[8] Boyu J, Qin J, Lang P, Koya A N, Hao Z, et al. 2016 Proc. SPIE 10028 100280
[9] Ueno K, Oshikiri T, Sun Q, Shi X and Misawa H 2018 Chem. Rev. 118 2955
[10] Wall S, Wegkamp D, Foglia L, Appavoo K, Nag J, et al. 2012 Nat. Commun 3 721
[11] Averitt R D 2010 Nat. Phys 6 639
[12] Ji B, Qin J, Tao H, Hao Z and Lin J 2016 New. J. Phys. 18 093046
[13] Koya A N, Ji B, Hao Z and Lin J 2017 Plasmonics 12 1693
[14] Koya A N and Lin J 2016 Proc. SPIE 10028 1002803
[15] Ji B, Qin J, Hao Z and Lin J 2015 Plasmonics 10 1573
[16] Dana B D, Koya A N, Song X and Lin J 2020 Plasmonics 15 1977
[17] Zhang K J, Da B and Ding Z J 2018 Ultramicroscopy 185 55
[18] Mária-Csete A S, Dávid Vass, Balázs B and Dombi P 2020 Sci. Rep. 10 12986
[19] Lalanne P, Yan W, Vynck K, Sauvan C and Hugonin J P 2018 Laser & Photon. Rev. 12 1700113
[20] Demetriadou A, Hamm J M, Luo Y, Pendry J B, Baumberg J J, et al. 2017 ACS. Photo 4 2410
[21] E DP 1985 Handbook of Optical Constants of Solids (Academic Press) 3 804
[22] Corvan D, Dzelzainis T, Hyland C, Nersisyan G, Yeung M, et al. 2016 Opt. Exp. 24 3127
[23] Hengster J and Uphues T 2017 Opt. Exp. 25 11347
[24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[25] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano. Lett 4 899
[26] Devaraj V, Choi J, Kim C S, Oh J W and Hwang Y H 2018 J. Korean Phys. Soc. 72 599
[27] Chow TH, Lai Y, Cui X, Lu W, Zhuo X, et al. 2019 Small 15 1902608
[28] Gao Y, Zhou N, Shi Z, Guo X and Tong L 2018 Photon. Res. 6 887
[29] Barbillon G, Ivanov A and Sarychev A K 2020 Symmetry 12 896
[30] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, et al. 2010 Nat. Mater. 9 707
[31] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[32] Lorek E, Mårsell E, Losquin A, Miranda M, Harth A, et al. 2015 Opt. Exp. 23 31460
[33] Grigorenko I and Efimov A 2009 New. J. Phys. 11 105042
[34] Stebbings S L, Smann F, Yang Y Y, Scrinzi A, Durach M, et al. 2011 New. J. Phys. 13 073010
[35] Melchior P, Bayer D, Schneider C, Fischer A, Rohmer M, et al. 2011 Phys. Rev. B 83 235407
[36] valos-Ovando O, Besteiro L V, Wang Z and Govorov A O 2020 Nanophotonics 9 3587
[37] Brixner T, Pfeiffer W and Garcia de Abajo J 2004 Opt. Lett. 29 2187
[38] Qin J, Lang P, Ji B Y, Alemayehu NK, Tao H Y, et al. 2016 Chin. Phys. Lett. 33 116801
[39] Harutyunyan H, Martinson A B F, Rosenmann D, Khorashad L K, Besteiro L V, et al. 2015 Nat. Nanotech. 10 770
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[4] Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses
Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(3): 033201.
[5] Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Wang Jun (王俊), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(10): 104205.
[6] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
[7] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
[8] Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui(张晖), Zhang Shi-An(张诗按), and Sun Zhen-Rong(孙真荣) . Chin. Phys. B, 2011, 20(8): 083202.
[9] Laser pulse design for coherent control of Rydberg lithium atoms
Zhang Xian-Zhou(张现周), Wu Su-Ling(伍素玲), Jiang Li-Juan(蒋利娟), Ma Huan-Qiang(马欢强), and Jia Guang-Rui(贾光瑞). Chin. Phys. B, 2010, 19(8): 083101.
[10] Coherent control of non-resonant two-photon transition in molecular system
Zhang Hui(张晖), Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2010, 19(11): 113208.
[11] Quantum coherent control of two-photon transitions by square phase-modulation
Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2008, 17(8): 2914-2918.
[12] Two-colour coherent control of multiphoton ionization: a comparison between long-range and short-range potential model atoms
Li Peng-Cheng(李鹏程) and Zhou Xiao-Xin(周效信). Chin. Phys. B, 2007, 16(10): 2946-2951.
No Suggested Reading articles found!