Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014201    DOI: 10.1088/1674-1056/ab5787
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband visible light absorber based on ultrathin semiconductor nanostructures

Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  It is desirable to have electromagnetic wave absorbers with ultrathin structural thickness and broader spectral absorption bandwidth with numerous applications in optoelectronics. In this paper, we theoretically propose and numerically demonstrate a novel ultrathin nanostructure absorber composed of semiconductor nanoring array and a uniform gold substrate. The results show that the absorption covers the entire visible light region, achieving an average absorption rate more than 90% in a wavelength range from 300 nm to 740 nm and a nearly perfect absorption from 450 nm to 500 nm, and the polarization insensitivity performance is particularly great. The absorption performance is mainly caused by the electrical resonance and magnetic resonance of semiconductor nanoring array as well as the field coupling effects. Our designed broadband visible light absorber has wide application prospects in the fields of thermal photovoltaics and photodetectors.
Keywords:  ultrathin nanostructures      electrical resonance      magnetic resonance      polarization insensitivity  
Received:  01 August 2019      Revised:  05 September 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2018A030313854 and 2016A030313851).
Corresponding Authors:  Hai-Ying Liu     E-mail:  hyliu@scnu.edu.cn

Cite this article: 

Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英) Broadband visible light absorber based on ultrathin semiconductor nanostructures 2020 Chin. Phys. B 29 014201

[1] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[2] Cai W S and Shalaev V 2011 Phys. Rev. B 83 115124
[3] Dong J W, Zheng H H, Lai Y, Wang H Z and Chan C T 2011 Phys. Rev. B 83 115124
[4] Andrea A and Engheta N 2008 J. Opt. A: Pure Appl. Opt. 10 093002
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Lin W W, Li Z C, Cheng H, Tang C C, Li J J, Zhang S, Chen S Q and Tian J G 2018 Adv. Mater. 30 1706368
[7] Khorasaninejad M, Chen W T, Robert C D, Jaewon O, Alexander Y Z, Federico C 2016 Science 352 1190
[8] Liu W W, Li Z C, Li Z, Cheng H, Tang C C, Li J J, Chen S Q and Tian J G 2019 Adv. Mater. 31 1901729
[9] Ra'di Y, Simovski C R and Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
[10] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[11] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[12] Yan M, Dai J and Qiu M 2014 J. Opt. 16 025002
[13] Yudistira H T, Liu S, Cui T J and Zhang H 2018 Beilstein J. Nanotechnol. 9 1437
[14] Zhou W C, Li K W, Song C, Hao P, Chi M B, Yu M X and Wu Y H 2015 Opt. Express 23 413
[15] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956
[16] Behera S and Joseph J 2017 J. Appl. Phys. 122 193104
[17] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 94204
[18] Li J, Verellen N and Dorpe P V 2017 ACS Photon. 4 1893
[19] Liu S D, Wang Z X, Wang W J, Chen J D and Chen Z H 2017 Opt. Express 25 22375
[20] Kruk S and Kivshar Y 2017 ACS Photon. 4 2638
[21] Zhou X, Lai M Q, Zhang D, Deng F, Xiang J, Luo L, Lai D N, Wen W K, Fan H F, Dai Q F and Liu H Y 2018 Opt. Commun. 428 47
[22] Lv J W, Mu H W, Liu Q, Zhang X M, Li X L, Liu C, Jiang S S, Sun T and Chu P K 2018 Appl. Opt. 57 4771
[23] Gómez-Medina R, GarcíaC ámara B, Suárez-Lacalle I, González F, Moreno F, Nieto-Vesperinas M and Sáenz J J 2011 J. Nanophoton. 5 053512
[24] Bezares F J, Long J P, Glembocki O J, Guo J P, Rendell R W, Kasica R, Shirey L, Owrutsky J C and Caldwell J D 2013 Opt. Express 21 27587
[25] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[26] Liu Z Q, Fu G L, Huang Z P, Chen J, Pan P P, Yang Y X and Liu Z M 2017 Mater. Lett. 194 13
[27] Kang D, Lee S M, Li Z W, Seyedi A, O'Brien J, Xiao J L and Yoon J 2014 Adv. Opt. Mater. 2 373
[28] Hagglund C, Zeltzer G, Ruiz R, Wangperawong A, Roelofs K E and Bent S F 2016 ACS Photon. 3 456
[29] Goldflam M D, Kadlec E A, Olson B V, Klem J F, Hawkins S D, Parameswaran S, Coon W T, Keeler G A, Fortune T E, Tauke-Pedretti A, Wendt J R, Shaner E A, Davids P S, Kim J K and Peters D W 2016 Appl. Phys. Lett. 109 251103
[30] Argyropoulos C, Le K Q, Mattiucci N, D'Aguanno G and Alú A 2013 Phys. Rev. B 87 205112
[31] Gong Y K, Wang Z B, Li K, Uggalla L, Huang J G, Copner N, Zhou Y, Qiao D and Zhu J Y 2017 Opt. Lett. 42 4537
[32] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802
[33] Liu X S, Chen J, Liu J S, Huang Z P, Yu M D, Pan P P and Liu Z Q 2017 Appl. Phys. Express 10 111201
[34] Zhu W R, Xiao F J, Rukhlenko I D, Geng J P, Liang X L, Premaratne M and Jin R 2017 Opt. Express 25 5781
[35] Ni H B, Wang M, Shen T Y and Zhou J 2015 ACS Nano 9 1913
[36] Taflove A and Hagness S C 2016 Finite-Difference Time-Domain Solution of Maxwell's Equations (New York: John Wiley & Sons, Inc) p. 9
[37] Palik E D 1985 Handbook of Optical Constants of Solids (Boston: Academic Press) p. 189
[38] Liu W W, Li Z C, Cheng H, Chen S Q and Tian J G 2017 Phys. Rev. Appl. 8 014012
[1] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[5] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[6] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[7] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[8] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[9] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[10] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[11] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[12] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[13] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[14] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[15] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
No Suggested Reading articles found!