|
|
Benchmarking PBE+D3 and SCAN+rVV10 methods using potential energy surfaces generated with MP2+ ΔCCSD(T) calculation |
Jie Chen(陈劼)1,2, Weiyu Xie(谢炜宇)3, Kaihang Li(李开航)1, Shengbai Zhang(张绳百)4, Yi-Yang Sun(孙宜阳)2 |
1 Department of Physics, Xiamen University, Xiamen 361005, China; 2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; 3 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China; 4 Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA |
|
|
Abstract We develop a benchmark system for van der Waals interactions obtained with MP2+ΔCCSD(T) method at complete basis set limit. With this benchmark, we examine the widely used PBE+D3 method and recently developed SCAN+rVV10 method for density functional theory calculations. Our benchmark is based on two molecules:glycine (or Gly, an amino acid) and uracil (or U, an RNA base). We consider six dimer configurations of the two monomers and their potential energy surfaces as a function of relative distance and rotation angle. The Gly-Gly, Gly-U, and U-U pairs represent London dispersion, hydrogen bonding, and π-π stacking interactions, respectively. Our results show that both PBE+D3 and SCAN+rVV10 methods can yield accuracy better than 1 kcal/mol, except for the cases when the distance between the two monomers is significantly smaller than the equilibrium distance. In such a case, neither of these methods can yield uniformly accurate results for all the configurations. In addition, it is found that the SCAN and SCAN+rVV10 methods can reproduce some subtle features in a rotational potential energy curve, while the PBE, PBE+D3, and the local density approximation fail.
|
Received: 02 November 2019
Revised: 28 November 2019
Accepted manuscript online:
|
PACS:
|
31.15.eg
|
(Exchange-correlation functionals (in current density functional theory))
|
|
31.15.vq
|
(Electron correlation calculations for polyatomic molecules)
|
|
Corresponding Authors:
Yi-Yang Sun
E-mail: yysun@mail.sic.ac.cn
|
Cite this article:
Jie Chen(陈劼), Weiyu Xie(谢炜宇), Kaihang Li(李开航), Shengbai Zhang(张绳百), Yi-Yang Sun(孙宜阳) Benchmarking PBE+D3 and SCAN+rVV10 methods using potential energy surfaces generated with MP2+ ΔCCSD(T) calculation 2020 Chin. Phys. B 29 013102
|
[1] |
Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
|
[2] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[3] |
Berland K, Cooper V R, Lee K, Schroder E, Thonhauser T, Hyldgaard P and Lundqvist B I 2015 Rep. Prog Phys. 78 066501
|
[4] |
Grimme S 2011 Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 1 211
|
[5] |
Andersson Y, Langreth D C and Lundqvist B I 1996 Phys. Rev. Lett. 76 102
|
[6] |
Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
|
[7] |
Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Phys. Rev. B 76 125112
|
[8] |
Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[9] |
Vydrov O A and Van Voorhis T 2009 Phys. Rev. Lett. 103 063004
|
[10] |
Vydrov O A and Van Voorhis T 2010 J. Chem. Phys. 133 244103
|
[11] |
Sabatini R, Gorni T and de Gironcoli S 2013 Phys. Rev. B 87 041108
|
[12] |
Tao J M, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
|
[13] |
Perdew J P, Ruzsinszky A, Csonka G I, Constantin L A and Sun J W 2009 Phys. Rev. Lett. 103 026403
|
[14] |
Zhao Y and Truhlar D G 2006 J. Chem. Phys. 125 194101
|
[15] |
Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402
|
[16] |
Sun J W, Remsing R C, Zhang Y B, Sun Z R, Ruzsinszky A, Peng H W, Yang Z H, Paul A, Waghmare U, Wu X F, Klein M L and Perdew J P 2016 Nat. Chem. 8 831
|
[17] |
Peng H, Yang Z H, Perdew J P and Sun J 2016 Phys. Rev. X 6 041005
|
[18] |
Grimme S 2004 J. Comput. Chem. 25 1463
|
[19] |
Grimme S 2006 J. Chem. Phys. 124 034108
|
[20] |
Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
|
[21] |
Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
|
[22] |
von Lilienfeld O A, Tavernelli I, Rothlisberger U and Sebastiani D 2004 Phys. Rev. Lett. 93 153004
|
[23] |
Lin I C, Coutinho-Neto M D, Felsenheimer C, von Lilienfeld O A, Tavernelli I and Rothlisberger U 2007 Phys. Rev. B 75 205131
|
[24] |
Sun Y Y, Kim Y H, Lee K and Zhang S B 2008 J. Chem. Phys. 129 154102
|
[25] |
Jurecka P, Sponer J, Cerny J and Hobza P 2006 Phys. Chem. Chem. Phys. 8 1985
|
[26] |
Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 Chem. Phys. Lett. 157 479
|
[27] |
Thanthiriwatte K S, Hohenstein E G, Burns L A and Sherrill C D 2011 J. Chem. Theory Comput. 7 88
|
[28] |
Capdevila-Cortada M, Ribas-Arino J and Novoa J J 2014 J. Chem. Theory Comput. 10 650
|
[29] |
Nazarian D, Ganesh P and Sholl D S 2015 J. Mater. Chem. A 3 22432
|
[30] |
Peng Q, Rahul, Wang G, Liu G R, Grimme S and De S 2015 J. Phys. Chem. B 119 5896
|
[31] |
Wang C W, Hui K and Chai J D 2016 J. Chem. Phys. 145 204101
|
[32] |
Patra A, Bates J E, Sun J and Perdew J P 2017 Proc. Natl. Acad. Sci. USA 114 E9188
|
[33] |
Peng H and Perdew J P 2017 Phys. Rev. B 96 100101
|
[34] |
Jing Z, Wang H, Feng X, Xiao B, Ding Y, Wu K and Cheng Y 2019 J. Phys. Chem. Lett. 10 5721
|
[35] |
Mallikarjun Sharada S, Karlsson R K B, Maimaiti Y, Voss J and Bligaard T 2019 Phys. Rev. B 100 035439
|
[36] |
Shepard S and Smeu M 2019 J. Chem. Phys. 150 154702
|
[37] |
Boys S F and Bernardi F 1970 Mol. Phys. 19 553
|
[38] |
Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J and Wilson A K 1998 Chem. Phys. Lett. 286 243
|
[39] |
Halkier A, Helgaker T, Jorgensen P, Klopper W and Olsen J 1999 Chem. Phys. Lett. 302 437
|
[40] |
Sun Y Y, Lee K, Wang L, Kim Y H, Chen W, Chen Z and Zhang S B 2010 Phys. Rev. B 82 073401
|
[41] |
Werner H J, Knowles P J, Knizia G, Manby F R and Schutz M 2006 MOLPRO, version 2006.1, A Package Ab Initio Programs 2019
|
[42] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[43] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[44] |
Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|