Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 013102    DOI: 10.1088/1674-1056/ab5fbb
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Benchmarking PBE+D3 and SCAN+rVV10 methods using potential energy surfaces generated with MP2+ ΔCCSD(T) calculation

Jie Chen(陈劼)1,2, Weiyu Xie(谢炜宇)3, Kaihang Li(李开航)1, Shengbai Zhang(张绳百)4, Yi-Yang Sun(孙宜阳)2
1 Department of Physics, Xiamen University, Xiamen 361005, China;
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
3 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China;
4 Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Abstract  We develop a benchmark system for van der Waals interactions obtained with MP2+ΔCCSD(T) method at complete basis set limit. With this benchmark, we examine the widely used PBE+D3 method and recently developed SCAN+rVV10 method for density functional theory calculations. Our benchmark is based on two molecules:glycine (or Gly, an amino acid) and uracil (or U, an RNA base). We consider six dimer configurations of the two monomers and their potential energy surfaces as a function of relative distance and rotation angle. The Gly-Gly, Gly-U, and U-U pairs represent London dispersion, hydrogen bonding, and π-π stacking interactions, respectively. Our results show that both PBE+D3 and SCAN+rVV10 methods can yield accuracy better than 1 kcal/mol, except for the cases when the distance between the two monomers is significantly smaller than the equilibrium distance. In such a case, neither of these methods can yield uniformly accurate results for all the configurations. In addition, it is found that the SCAN and SCAN+rVV10 methods can reproduce some subtle features in a rotational potential energy curve, while the PBE, PBE+D3, and the local density approximation fail.
Keywords:  van der Waals force      meta-GGA      density functional theory      CCSD(T)  
Received:  02 November 2019      Revised:  28 November 2019      Accepted manuscript online: 
PACS:  31.15.eg (Exchange-correlation functionals (in current density functional theory))  
  31.15.vq (Electron correlation calculations for polyatomic molecules)  
Corresponding Authors:  Yi-Yang Sun     E-mail:  yysun@mail.sic.ac.cn

Cite this article: 

Jie Chen(陈劼), Weiyu Xie(谢炜宇), Kaihang Li(李开航), Shengbai Zhang(张绳百), Yi-Yang Sun(孙宜阳) Benchmarking PBE+D3 and SCAN+rVV10 methods using potential energy surfaces generated with MP2+ ΔCCSD(T) calculation 2020 Chin. Phys. B 29 013102

[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] Berland K, Cooper V R, Lee K, Schroder E, Thonhauser T, Hyldgaard P and Lundqvist B I 2015 Rep. Prog Phys. 78 066501
[4] Grimme S 2011 Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 1 211
[5] Andersson Y, Langreth D C and Lundqvist B I 1996 Phys. Rev. Lett. 76 102
[6] Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[7] Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Phys. Rev. B 76 125112
[8] Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[9] Vydrov O A and Van Voorhis T 2009 Phys. Rev. Lett. 103 063004
[10] Vydrov O A and Van Voorhis T 2010 J. Chem. Phys. 133 244103
[11] Sabatini R, Gorni T and de Gironcoli S 2013 Phys. Rev. B 87 041108
[12] Tao J M, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[13] Perdew J P, Ruzsinszky A, Csonka G I, Constantin L A and Sun J W 2009 Phys. Rev. Lett. 103 026403
[14] Zhao Y and Truhlar D G 2006 J. Chem. Phys. 125 194101
[15] Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[16] Sun J W, Remsing R C, Zhang Y B, Sun Z R, Ruzsinszky A, Peng H W, Yang Z H, Paul A, Waghmare U, Wu X F, Klein M L and Perdew J P 2016 Nat. Chem. 8 831
[17] Peng H, Yang Z H, Perdew J P and Sun J 2016 Phys. Rev. X 6 041005
[18] Grimme S 2004 J. Comput. Chem. 25 1463
[19] Grimme S 2006 J. Chem. Phys. 124 034108
[20] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[21] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[22] von Lilienfeld O A, Tavernelli I, Rothlisberger U and Sebastiani D 2004 Phys. Rev. Lett. 93 153004
[23] Lin I C, Coutinho-Neto M D, Felsenheimer C, von Lilienfeld O A, Tavernelli I and Rothlisberger U 2007 Phys. Rev. B 75 205131
[24] Sun Y Y, Kim Y H, Lee K and Zhang S B 2008 J. Chem. Phys. 129 154102
[25] Jurecka P, Sponer J, Cerny J and Hobza P 2006 Phys. Chem. Chem. Phys. 8 1985
[26] Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 Chem. Phys. Lett. 157 479
[27] Thanthiriwatte K S, Hohenstein E G, Burns L A and Sherrill C D 2011 J. Chem. Theory Comput. 7 88
[28] Capdevila-Cortada M, Ribas-Arino J and Novoa J J 2014 J. Chem. Theory Comput. 10 650
[29] Nazarian D, Ganesh P and Sholl D S 2015 J. Mater. Chem. A 3 22432
[30] Peng Q, Rahul, Wang G, Liu G R, Grimme S and De S 2015 J. Phys. Chem. B 119 5896
[31] Wang C W, Hui K and Chai J D 2016 J. Chem. Phys. 145 204101
[32] Patra A, Bates J E, Sun J and Perdew J P 2017 Proc. Natl. Acad. Sci. USA 114 E9188
[33] Peng H and Perdew J P 2017 Phys. Rev. B 96 100101
[34] Jing Z, Wang H, Feng X, Xiao B, Ding Y, Wu K and Cheng Y 2019 J. Phys. Chem. Lett. 10 5721
[35] Mallikarjun Sharada S, Karlsson R K B, Maimaiti Y, Voss J and Bligaard T 2019 Phys. Rev. B 100 035439
[36] Shepard S and Smeu M 2019 J. Chem. Phys. 150 154702
[37] Boys S F and Bernardi F 1970 Mol. Phys. 19 553
[38] Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J and Wilson A K 1998 Chem. Phys. Lett. 286 243
[39] Halkier A, Helgaker T, Jorgensen P, Klopper W and Olsen J 1999 Chem. Phys. Lett. 302 437
[40] Sun Y Y, Lee K, Wang L, Kim Y H, Chen W, Chen Z and Zhang S B 2010 Phys. Rev. B 82 073401
[41] Werner H J, Knowles P J, Knizia G, Manby F R and Schutz M 2006 MOLPRO, version 2006.1, A Package Ab Initio Programs 2019
[42] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
No Suggested Reading articles found!