|
|
Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms |
Xuerong Shi(师雪荣)1,2, Hao Zhang(张好)1,2, Mingyong Jing(景明勇)1,2, Linjie Zhang(张临杰)1,2, Liantuan Xiao(肖连团)1,2, Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Fluorescence loss spectrum for detecting cold Rydberg atoms with high sensitivity has been obtained based on lock-in detection of fluorescence of 6P3/2 state when cooling lasers of the magneto-optical trap are modulated. The experiment results show that the signal to noise ratio has been improved by 32.64 dB when the modulation depth (converted to laser frequency) and frequency are optimized to 4 MHz and 6 kHz, respectively. This technique enables us to perform a highly sensitive non-destructive detection of Rydberg atoms.
|
Received: 10 October 2019
Revised: 12 November 2019
Accepted manuscript online:
|
PACS:
|
32.10.Ee
|
(Magnetic bound states, magnetic trapping of Rydberg states)
|
|
32.30.Dx
|
(Magnetic resonance spectra)
|
|
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304203 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 61505099, 61827824, 91536110, and 61975104), and the Fund for Shanxi ‘1331 Project’ Key Subjects Construction, Bairen Project of Shanxi Province, China. |
Corresponding Authors:
Hao Zhang
E-mail: haozhang@sxu.edu.cn
|
Cite this article:
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂) Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms 2020 Chin. Phys. B 29 013201
|
[1] |
Grier A T, Cetina M, Oručević F and Vuletić V 2009 Phys. Rev. Lett. 102 223201
|
[2] |
Schmid S, Härter A and Denschlag J H 2010 Phys. Rev. Lett. 105 133202
|
[3] |
Härter A and Denschlag J H 2014 Contemporary Phys. 55 1
|
[4] |
Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
|
[5] |
Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrí T, Lahaye T and Browaeys A 2016 Nature 534 667
|
[6] |
Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579
|
[7] |
Zhang X L, Isenhower L, Gill A T, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
|
[8] |
Browaeys A, Gaëtan A, Wilk T, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Pillet P, Comparat D, Chotia A and Viteau M 2010 Phys. Rev. Lett. 104 010502
|
[9] |
Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
|
[10] |
Dudin Y O and Kuzmich A 2012 Science 336 887
|
[11] |
Dudin Y O, Bariani F and Kuzmich A 2012 Phys. Rev. Lett. 109 133602
|
[12] |
Parigi V, Bimbard E, Stanojevic J, Hilliard A J, Nogrette F, Tualle-Brouri R, Ourjoumtsev A and Grangier P 2012 Phys. Rev. Lett. 109 233602
|
[13] |
Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001
|
[14] |
Weimer H, Müller M, Lesanovsky I, Zoller P and Büchler H P 2010 Nat. Phys. 6 382
|
[15] |
Pohl T, Adams C S and Sadephpour H R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 180201
|
[16] |
Weimer H, Müller M, Büchler H P and Lesanovsky I 2011 Quantum Information Processing 10 885
|
[17] |
Bounds A D, Jackson N C, Hanley R K, Faoro R, Bridge E M, Huillery P and Jones M P A 2018 Phys. Rev. Lett. 120 183401
|
[18] |
Secker T, Ewald N, Joger J, Fürst H, Feldker T and Gerritsma R 2017 Phys. Rev. Lett. 118 263201
|
[19] |
Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p. 152
|
[20] |
Kerman A J, Sage J M, Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett. 92 153001
|
[21] |
Goodsell A, Ristroph T, Golovchenko J A and Hau L V 2010 Phys. Rev. Lett. 104 133002
|
[22] |
Haimberger C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402
|
[23] |
Hart N A, Strohaber J, Kolomenskii A A, Paulus G G, Bauer D and Schuessler H A 2016 Phys. Rev. A 93 063426
|
[24] |
Gregoric V C, Bennett J J, Gualtieri B R, Kannad A, Liu Z C, Rowley Z A, Carroll T J and Noel M W 2018 Phys. Rev. A 98 063404
|
[25] |
Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106
|
[26] |
Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
|
[27] |
Jiao Y C, Zhao J M and Jia S T 2018 Acta Phys. Sin. 67 073201 (in Chinese)
|
[28] |
Yang Z W, Jiao Y C, Han X X, Zhao J M and Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese)
|
[29] |
Hofmann C S, Günter G, Schempp H, Robert-de-Saint-Vincent M, Gärttner M, Evers J, Whitlock S and Weidemüller M 2013 Phys. Rev. Lett. 110 203601
|
[30] |
Dutta S K, Feldbaum D and Raithel G 2000 arXiv: physics/ 0003109v2 [physics. atom-ph]
|
[31] |
Arias A, Helmrich S, Schweiger C, Ardizzone L, Lochead G and Whitlock S 2017 Opt. Express 25 14836
|
[32] |
Johnson L A M, Majeed H O, Sanguinetti B, Becker Th and Varcoe B T H 2010 New J. Phys. 12 063028
|
[33] |
Wang L R, Ma J, Li C Y, Zhao J M, Xiao L T and Jia S T 2007 Appl. Phys. B 89 53
|
[34] |
Liu W L, Wu J Z, Ma J, Xiao L T and Jia S T 2014 Chin. Phys. B 23 013301
|
[35] |
Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T and Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese)
|
[36] |
Omenetto N, Benetti P, Hart L P, Winefordner J D and Alkemade C Th J 1973 Spectrochim. Acta B 28 289
|
[37] |
He J, Yang B D, Zhang T C and Wang J M 2011 J. Phys. D: Appl. Phys. 44 135102
|
[38] |
Atutov S N, Biancalana V, Burchianti A, Calabrese R, Gozzini S, Guidi V, Lenisa P, Marinelli C, Mariotti E, Moi L, Nasyrov K and Pod'yachev S 2001 Eur. Phys. J. D 13 71
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|