Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108705    DOI: 10.1088/1674-1056/abaed9
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Application of topological soliton in modeling protein folding: Recent progress and perspective

Xu-Biao Peng(彭绪彪)1,†, Jiao-Jiao Liu(刘娇娇)1, Jin Dai(戴劲)1,2, Antti J Niemi1,2,‡, and Jian-Feng He(何建锋)1,§
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China
2 Nordita, Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
Abstract  

Proteins are important biological molecules whose structures are closely related to their specific functions. Understanding how the protein folds under physical principles, known as the protein folding problem, is one of the main tasks in modern biophysics. Coarse-grained methods play an increasingly important role in the simulation of protein folding, especially for large proteins. In recent years, we proposed a novel coarse-grained method derived from the topological soliton model, in terms of the backbone Cα chain. In this review, we will first systematically address the theoretical method of topological soliton. Then some successful applications will be displayed, including the thermodynamics simulation of protein folding, the property analysis of dynamic conformations, and the multi-scale simulation scheme. Finally, we will give a perspective on the development and application of topological soliton.

Keywords:  protein folding      coarse-grained method      Landau free energy function      topological soliton  
Received:  30 June 2020      Revised:  08 August 2020      Accepted manuscript online:  13 August 2020
PACS:  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
  87.14.E- (Proteins)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.hm (Folding dynamics)  
Corresponding Authors:  E-mail: xubiaopeng@bit.edu.cn E-mail: Antti.Niemi@physics.uu.se §Corresponding author. E-mail: hjf@bit.edu.cn   

Cite this article: 

Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§ Application of topological soliton in modeling protein folding: Recent progress and perspective 2020 Chin. Phys. B 29 108705

Fig. 1.  

The Frenet frame vectors (ti, ni, bi) at the i-th Cα atom.

Fig. 2.  

The virtual bond and torsion angles (κi, τi) along the backbone Cα chain.

Proteins PDB ID Length of sequence RMSD/Å
Villin headpiece 35 1YRF 29 aa 0.38
Myoglobin 1ABS 154 aa 0.78
HIV-1 reverse transcriptase protein 3DLK 18 aa 1.13
λ-repressor 1LMB 84 aa 0.51
Human islet amyloid polypeptide 2L86 37 aa 1.17
Myc proto-oncogene protein 1NKP 88 aa 0.98
Amyloid intra-cellular domain 3DXC 28 aa 0.46
Engrailed homeodomain 2JWT 61 aa 0.67
Parvalbumin-β 2PVB 57 aa 1.28
Table 1.  

The proteins that have been fitted using topological soliton model.

Fig. 3.  

The radius of gyration evolution with temperature increasing. The gray, red, yellow dashed lines are corresponding to the real temperatures of 25 °C, 75 °C, and 90 °C, respectively. Reproduced with permission from Ref. [46].

Fig. 4.  

The susceptibility of helical denucleation. Three transition temperatures are labeled as T1, T2, TE, representing the two transition temperatures for the radius of gyration and for the energy, respectively. The colored thick dash lines are the same as in Fig. 3. Reproduced with permission from Ref. [46].

Fig. 5.  

The superimposition of the soliton model and PDB structures. Left panel is for 2L86 and right panel is for 3DXC. The light blue is from PDB structure and the red is from soliton model. Reproduced with permission from Refs. [35,36].

Fig. 6.  

The conformational clusters for 2L86 at low temperature. Panel (a) is the conformational landscape, and panel (b) is the representative structures. Reproduced with permission from Ref. [35].

Fig. 7.  

The conformational clusters for 3DXC at low temperature. Panel (a) is the energy landscape of the conformational ensemble, where the red triangle denotes the initial structure in PDB. Panel (b) is the representative structures whose energies are lower than the initial structures. Reproduced with permission from Ref. [36].

Fig. 8.  

The corresponding soliton mobility of the clusters in 3DXC. Reproduced with permission from Ref. [36].

Fig. 9.  

The conformational clusters for 1NKP at low temperature. Top panel is the energy landscape of the conformational ensemble, where the red triangle denotes the initial structure in PDB. The bottom panel is the corresponding conformational landscape projected from top panel. Reproduced with permission from Ref. [38].

Fig. 10.  

The stability comparison among clusters in 1NKP, (a) comparison of the RMSD evolutions in MD simulations with initial conformations in clusters 1, 4, and 5 (denoted as PDB in the legend), (b) a comparison of the radius of gyration evolutions in MD simulations with initial conformations in clusters 1, 4, and 5 (denoted as PDB in the legend), (c) the conformational landscape evolution for MD simulations with initial conformation from cluster 1, (d) the conformational landscape evolution for MD simulations with initial conformation from cluster 5. Reproduced with permission from Ref. [38].

Fig. 11.  

The folding index evolution in MD simulation. The top panel is the folding index in the entire MD simulation process, and bottom panel is a zoom in of top panel in frame 3950–4000. Reproduced with permission from Ref. [37].

Fig. 12.  

The sidechain soliton motion in the N-terminal of the protein during the MD simulation. The two panels show the same data, but from different perspectives, for the first ten residues. Reproduced with permission from Ref. [37].

[1]
Dill K, Ozkan S B, Weikl T R, Chodera J D, Voelz V A 2007 Curr. Opin. Struc. Biol. 17 342 DOI: 10.1016/j.sbi.2007.06.001
[2]
Dill K A, MacCallum J K 2012 Science 338 1042 DOI: 10.1126/science.1219021
[3]
Chiti F, Dobson C M 2006 Ann. Rev. Biochem. 75 333 DOI: 10.1146/annurev.biochem.75.101304.123901
[4]
Dobson C M 2003 Nature 426 884 DOI: 10.1038/nature02261
[5]
Bullock A N, Fersht A R 2001 Nat. Rev. Cancer 1 68 DOI: 10.1038/35094077
[6]
Davies J 1996 Nature 383 219 DOI: 10.1038/383219a0
[7]
Walsh C T 2000 Nature 406 775 DOI: 10.1038/35021219
[8]
Fischbach M A, Walsh C T 2009 Science 325 1089 DOI: 10.1126/science.1176667
[9]
Clercq E D, Li G 2016 Clin. Microbiol. Rev. 29 695 DOI: 10.1128/CMR.00102-15
[10]
Domingo E 2016 Virus as Populations London Elsevier 299
[11]
Roy A, Kucukural A, Zhang Y 2010 Nat. Protoc. 5 725 DOI: 10.1038/nprot.2010.5
[12]
Shi Y Z, Wu Y Y, Wang F H, Tan Z J 2014 Chin. Phys. B 23 078701 DOI: 10.1088/1674-1056/23/7/078701
[13]
Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y, Xiao Y 2017 Nucleic Acids Res. 45 6299 DOI: 10.1093/nar/gkx386
[14]
Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D 2020 Proc. Natl. Acad. Sci. USA 117 1496 DOI: 10.1073/pnas.1914677117
[15]
Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 EMBO J. 27 3279 DOI: 10.1038/emboj.2008.240
[16]
Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540 DOI: 10.1021/ja5119368
[17]
Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886 DOI: 10.1126/sciadv.1600886
[18]
Gou L, Jin T, Chen S, Li N, Hao D, Zhang S, Zhang L 2018 Chin. Phys. B 27 028708 DOI: 10.1088/1674-1056/27/2/028708
[19]
Lindorff-Larsen K, Piana S, Dror R O, Shaw D E 2011 Science 334 517 DOI: 10.1126/science.1208351
[20]
Piana S, Klepeis J L, Shaw D E 2014 Curr. Opin. Struct. Biol. 24 98 DOI: 10.1016/j.sbi.2013.12.006
[21]
Sugita Y, Kitao A, Okamoto Y 2000 J. Chem. Phys. 113 6042 DOI: 10.1063/1.1308516
[22]
Jing Z F, Sun H 2015 J. Chem. Theory Comput. 11 2395 DOI: 10.1021/acs.jctc.5b00236
[23]
Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187 DOI: 10.1016/0021-9991(77)90121-8
[24]
Liao A, Parrinello M 2002 Proc. Natl. Acad. Sci. 99 12562 DOI: 10.1073/pnas.202427399
[25]
Gō N 1983 Ann. Rev. Biophys. Bioeng. 12 183 DOI: 10.1146/annurev.bb.12.060183.001151
[26]
Khalili M, Liwo A, Jagielska A, Scheraha H 2005 J. Phys. Chem. B 109 13798 DOI: 10.1021/jp058007w
[27]
Zuo G H, Zhang J, Wang J, Wang W 2005 Chin. Phys. Lett. 22 1809 DOI: 10.1088/0256-307X/22/7/069
[28]
Zuo G H, Hu J, Fang H P 2007 Chin. Phys. Lett. 24 2426 DOI: 10.1088/0256-307X/24/8/074
[29]
Lu Y K, Zhou X, OuYang Z C 2017 Chin. Phys. B 26 050202 DOI: 10.1088/1674-1056/26/5/050202
[30]
Su J G, Han X M, Zhao S X 2016 J. Mol. Model. 22 1 DOI: 10.1007/s00894-015-2876-x
[31]
Li W, Wang W, Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550 DOI: 10.1073/pnas.1402768111
[32]
Wang Y, Chu X, Suo Z, Wang E, Wang J 2012 J. Am. Chem. Soc. 134 13755 DOI: 10.1021/ja3045663
[33]
Niemi A J 2003 Phys. Rev. D 67 106004 DOI: 10.1103/PhysRevD.67.106004
[34]
Hu S, Jiang Y, Niemi A J 2013 Phys. Rev. D 87 105011 DOI: 10.1103/PhysRevD.87.105011
[35]
He J F, Dai J, Li J, Peng X B, Niemi A J 2015 J. Chem. Phys. 142 045102 DOI: 10.1063/1.4905586
[36]
Dai J, Niemi A J, He J F 2016 J. Chem. Phys. 145 045103 DOI: 10.1063/1.4959582
[37]
Dai J, Niemi A J, He J F, Sieradzan A, Ilieva N 2016 Phys. Rev. E 93 032409 DOI: 10.1103/PhysRevE.93.032409
[38]
Liu J J, Dai J, He J F, Niemi A J, Ilieva N 2017 Phys. Rev. E 95 032406 DOI: 10.1103/PhysRevE.95.032406
[39]
Peng X, Chenani A, Hu S, Zhou Y, Niemi A J 2014 BMC Struct. Biol. 14 27 DOI: 10.1186/s12900-014-0027-8
[40]
Anfinsen C B, Scheraga H A 1975 Adv. Protein Chem. 29 205 DOI: 10.1016/s0065-3233(08)60413-1
[41]
Landau L D, Lifshitz E M 2013 Statistical Physics 5 London Elsevier 429
[42]
Chernodub M, Hu S, Niemi A J 2010 Phys. Rev. E 82 011916 DOI: 10.1103/PhysRevE.82.011916
[43]
Scalley M L, Baker D 1997 Proc. Natl. Acad. Sci. 94 10636 DOI: 10.1073/pnas.94.20.10636
[44]
Glauber R J 1963 J. Math. Phys. 4 294 DOI: 10.1063/1.1703954
[45]
Bortz A B, Kalos M H, Lebowitz J L 1975 J. Comput. Phys. 17 10 DOI: 10.1016/0021-9991(75)90060-1
[46]
Peng X, Sieradzan A K, Niemi A J 2016 Phys. Rev. E 94 062405 DOI: 10.1103/PhysRevE.94.062405
[47]
Krokhotin A, Niemi A J, Peng X 2012 Phys. Rev. E 85 031906 DOI: 10.1103/PhysRevE.85.031906
[1] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[2] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[3] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[4] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[5] Smoothing potential energy surface of proteins by hybrid coarse grained approach
Yukun Lu(卢禹锟), Xin Zhou(周昕), ZhongCan OuYang(欧阳钟灿). Chin. Phys. B, 2017, 26(5): 050202.
[6] Proteins:From sequence to structure
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2014, 23(7): 078705.
[7] Structure optimization by heuristic algorithm in a coarse-grained off-lattice model
Liu Jing-Fa(刘景发). Chin. Phys. B, 2009, 18(6): 2615-2621.
[8] Protein structural codes and nucleation sites for protein folding
Jiang Fan(江凡) and Li Nan(李南). Chin. Phys. B, 2007, 16(2): 392-404.
[9] Nanosecond-time-resolved infrared spectroscopic study of fast relaxation kinetics of protein folding by means of laser-induced temperature-jump
Zhang Qing-Li (张庆利), Wang Li (王莉), Weng Yu-Xiang (翁羽翔), Qiu Xiang-Gang (邱祥冈), Wang Wei-Chi (王渭池), Yan Ji-Xiang (阎吉祥). Chin. Phys. B, 2005, 14(12): 2484-2490.
No Suggested Reading articles found!