Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078701    DOI: 10.1088/1674-1056/ab8daf
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation

Xiaofeng Zhang(张晓峰)1, Zilong Guo(郭子龙)1, Ping Yu(余平)1, Qiushi Li(李秋实)2, Xin Zhou(周昕)2, Hu Chen(陈虎)1
1 Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Two-state folding and down-hill folding are two kinds of protein folding dynamics for small single domain proteins. Here we apply molecular dynamics (MD) simulation to the two-state protein GB1 and down-hill folding protein gpW to reveal the relationship of their free energy landscape and folding/unfolding dynamics. Results from the steered MD simulations show that gpW is much less mechanical resistant than GB1, and the unfolding process of gpW has more variability than that of GB1 according to their force-extension curves. The potential of mean force (PMF) of GB1 and gpW obtained by the umbrella sampling simulations shows apparent difference: PMF of GB1 along the coordinate of extension exhibits a kink transition point where the slope of PMF drops suddenly, while PMF of gpW increases with extension smoothly, which are consistent with two-state folding dynamics of GB1 and downhill folding dynamics of gpW, respectively. Our results provide insight to understand the fundamental mechanism of different folding dynamics of two-state proteins and downhill folding proteins.
Keywords:  protein folding      molecular dynamics simulation      umbrella sampling      potential of mean force  
Received:  30 March 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  87.14.E- (Proteins)  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874309, 11474237, and 11574310) and the 111 Project, China (Grant No. B16029).
Corresponding Authors:  Xin Zhou, Hu Chen     E-mail:;

Cite this article: 

Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎) Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation 2020 Chin. Phys. B 29 078701

[1] Honig B 1999 J. Mol. Biol. 293 283
[2] Kuhlman B, Dantas G, Ireton G C, Varani G, Stoddard B L and Baker D 2003 Science 302 1364
[3] Huang P S, Boyken S E and Baker D 2016 Nature 537 320
[4] Soto C 2003 Nat. Rev. Neurosci. 4 49
[5] McCallister E L, Alm E and Baker D 2000 Nat. Struct. Mol. Biol. 7 669
[6] Chen H, Fu H, Zhu X, Cong P, Nakamura F and Yan J 2011 Biophys. J. 100 517
[7] Beck D A C and Daggett V 2004 Methods 34 112
[8] Fersht A R and Daggett V 2002 Cell 108 573
[9] Leopold P E, Montal M and Onuchic J N 1992 Proc. Natl. Acad. Sci. USA 89 8721
[10] Bryngelson J D, Onuchic J N, Socci N D and Wolynes P G 1995 Proteins 21 167
[11] Jackson S E and Fersht A R 1991 Biochemistry (Mosc.) 30 10428
[12] Garcia-Mira M M, Sadqi M, Fischer N, Sanchez-Ruiz J M and Munoz V 2002 Science 298 2191
[13] Sadqi M, Fushman D and Munoz V 2006 Nature 442 317
[14] Zhang J, Li W, Wang J, Qin M and Wang W 2008 Proteins 72 1038
[15] Ding K, Louis J M and Gronenborn A M 2004 J. Mol. Biol. 335 1299
[16] Schmidt H L, Sperling L J, Gao Y G, Wylie B J, Boettcher J M, Wilson S R and Rienstra C M 2007 J. Phys. Chem. B 111 14362
[17] De Sancho D, Mittal J and Best R B 2013 J. Chem. Theory Comput. 9 1743
[18] Cao Y and Li H 2007 Nat. Mater. 6 109
[19] Jackson S E 1998 Fold. Des. 3 81
[20] Barrick D 2009 Phys. Biol. 6 015001
[21] Li H, Wang H C, Cao Y, Sharma D and Wang M 2008 J. Mol. Biol. 379 871
[22] Puchner E M and Gaub H E 2009 Curr. Opin. Struct. Biol. 19 605
[23] Murialdo H, Xing X, Tzamtzis D, Haddad A and Gold M 2003 Biochem. Cell Biol. 81 307
[24] Sborgi L, Verma A, Munoz V and de Alba E 2011 PLoS One 6 e26409
[25] Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz J M and Munoz V 2008 J. Am. Chem. Soc. 130 7489
[26] Lu H and Schulten K 1999 Proteins 35 453
[27] Lu H, Isralewitz B, Krammer A, Vogel V and Schulten K 1998 Biophys. J. 75 662
[28] Kaestner J 2011 Wiley Interdisciplinary Reviews-Computational Molecular Science 1 932
[29] Xu W, Li Y and Zhang Z 2012 Chin. Phys. Lett. 29 068702
[30] Souaille M and Roux B 2001 Comput. Phys. Commun. 135 40
[31] Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
[32] Kumar S, Bouzida D, Swendsen R H, Kollman P A and Rosenberg J M 1992 J. Comput. Chem. 13 1011
[33] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1995 J. Comput. Chem. 16 1339
[34] Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M and Yan J 2015 J. Am. Chem. Soc. 137 3540
[35] Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J and Chen H 2017 Angew. Chem. 129 5582
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
No Suggested Reading articles found!