|
|
Quantum interference of a time-dependent wave packet of atom irradiated by an ultra-short laser pulse |
Wen-Min Yan(闫文敏)1,2, Ji-Gen Chen(陈基根)3, Jun Wang(王俊)1,2, Fu-Ming Guo(郭福明)1,2, Yu-Jun Yang(杨玉军)1,2 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China; 3 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000, China |
|
|
Abstract The wave packet evolution of an atom irradiated by an intense laser pulse is systematically investigated by using the numerical solution of the time-dependent Schrödinger equation. There are two types of spatial interference structures in the time-dependent evolution of the atomic wave packet. With the increasing of the evolution time, the interference fringe spacing for type I (type II) becomes larger (smaller). As the wavelength of the incident laser increases, the interference of the wave packet is changed from type II to type I, and the shift of interference type can be attributed to the contribution of excited states by using the energy analysis of the time-dependent wave function.
|
Received: 16 September 2019
Revised: 05 November 2019
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307700 and 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11627807, 11534004,11975012, and 11774129), the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20170101153JC), and the Science and Technology Project of the Jilin Provincial Education Department, China (Grant No. JJKH20190183KJ). |
Corresponding Authors:
Yu-Jun Yang
E-mail: yangyj@jlu.edu.cn
|
Cite this article:
Wen-Min Yan(闫文敏), Ji-Gen Chen(陈基根), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军) Quantum interference of a time-dependent wave packet of atom irradiated by an ultra-short laser pulse 2020 Chin. Phys. B 29 013202
|
[1] |
Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
|
[2] |
Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A, Mitryukovsky S I, Fedotov A B and Serebryannikov E E 2016 Optica 3 299
|
[3] |
Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
|
[4] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[5] |
Winterfeldt C, Spielmann C and Gerber G 2008 Rev. Mod. Phys. 80 117
|
[6] |
Fu L B, Xin G G, Ye D F and Liu J 2012 Phys. Rev. Lett. 108 103601
|
[7] |
Chen Z J, Liang Y Q and Lin C D 2010 Phys. Rev. Lett. 104 253201
|
[8] |
Yu B H and Li Y B 2012 J. Mod. Opt. 59 1797
|
[9] |
Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
|
[10] |
Von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K and Worner H J 2018 Nat. Commun. 9 3162
|
[11] |
Trabert D, Hartung A, Eckart S, Trinter F, Kalinin A, Schoffler M, Schmidt L Ph H, Jahnke T, Kunitski M and Dorner R 2018 Phys. Rev. Lett. 120 043202
|
[12] |
Porat G, Alon G, Rozen S, Pedatzur O, Kruger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J and Dudovich N 2018 Nat. Commun. 9 2805
|
[13] |
Yun H, Mun J H and Hwang S I Park S B, Ivanov I A, Nam C H and Kim K T 2018 Nat. Photon. 12 620
|
[14] |
Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34393
|
[15] |
Li X F, L'Huillier A and Ferray M, Lompre L and Mainfray G 1989 Phys. Rev. A 39 5751
|
[16] |
Altucci C, Velotta R, Heesel E, Springste E, Marangos J P, Vozzi C, Benedetti E, Calegari F, Sansone G, Stagira S, Nisoli M and Tosa V 2006 Phys. Rev. A 73 043411
|
[17] |
Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S and Itatani J 2014 Nat.Commun. 5 3331
|
[18] |
Silva F, Teichmann S M, Cousin S L, Hemmer M and Biegert J 2015 Nat.Commun. 6 6611
|
[19] |
Marangos J P 2016 J. Phys. B 49 132001
|
[20] |
Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X S, Galloway B R, Porter C, Jr R K, Bevis C, Adams D E, Kapteyn H C, Murnane M M and Mancini G F 2017 Nat. Photon. 11 259
|
[21] |
Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A, Zilk M, Steinert M, Schrempel F, Pertsch T, Tvnnermann A, Limpert J and Rothhardt J 2018 Sci. Rep. 8 8677
|
[22] |
Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
|
[23] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[24] |
Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L and Yang Y J 2014 Chin. Phys. B 23 053201
|
[25] |
Zhai Z, Yu R F, Liu X S and Yang Y J 2008 Phys. Rev. A 78 041402
|
[26] |
Guo F M, Yang Y J, Jin M X, Ding D J and Zhu Q R 2009 Chin. Phys. Lett. 26 053201
|
[27] |
Chen J G, Zeng S L and Yang Y J 2010 Phys. Rev. A 82 043401
|
[28] |
Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A 83 023401
|
[29] |
Lin C, Zhang H T, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J and Yang W F 2016 Acta Phys. Sin. 65 223207 (in Chinese)
|
[30] |
Song X H, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D and Chen J 2016 Sci. Rep. 6 28392
|
[31] |
Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S L and Chen J 2016 Phys. Rev. A 94 043419
|
[32] |
Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F and Wu J 2017 Phys. Rev. Lett. 118 143203
|
[33] |
Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Quan W and Liu X J 2017 Phys. Rev. A 95 033426
|
[34] |
Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phys. Rev. Lett. 121 103201
|
[35] |
Zuo R X, Song X H, Liu X W, Yang S D, and Yang W F 2019 Chin. Phys. B 28 094208
|
[36] |
Feit M D and Fleck J A Jr 1983 J. Chem. Phys. 78 301
|
[37] |
Wei S S, Li S Y, Guo F M, Yang Y J and Wang B B 2013 Phys. Rev. A 87 063418
|
[38] |
Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419
|
[39] |
Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
|
[40] |
Chen J G, Yang Y J, Chen J and Wang B 2015 Phys. Rev. A 91 043403
|
[41] |
Tong X M, Watahiki S, Hino K and Toshima N 2007 Phys. Rev. Lett. 99 093001
|
[42] |
Zhang D W, Lv H, Meng C, Du X Y, Zhou Z Y, Zhao Z X and Yuan J M 2012 Phys. Rev. Lett. 109 243002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|