Abstract The propagation characteristic of two identical and parallel dark solitons in a silicon-on-insulator (SOI) waveguide is simulated numerically using the split-step Fourier method. The parallel dark solitons imposed by the initial chirp are investigated mainly by changing their power, their relative time delay. The simulation shows that the time delay deforms the parallel dark soliton pulse, forming a bright-like soliton in the transmission process and making the transmission quality down. By increasing the power of one dark soliton, the energy of the other dark soliton can be increased, and larger increase in a soliton's power leads to larger increase in the energy of the other. When the initial chirp is introduced into one of the dark solitons, higher energy consumption is observed. In particular, positive chirps resulting in pulse broadening width while negative chirps narrowing, with an obvious compression effect on the other dark soliton. Finally, large negative chirps are found to have a profound impact on parallel and nonparallel dark solitons.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.