Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014204    DOI: 10.1088/1674-1056/ab5784
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Soliton evolution and control in a two-mode fiber with two-photon absorption

Qianying Li(李倩颖)
Faculty of Engineering and Information Technology, The University of Sydney, Darlington NSW 2008, Sydney, Australia
Abstract  Soliton dynamics are numerically investigated in a two-mode fiber with the two-photon absorption, and the effects of the two-photon absorption on the soliton propagation and interaction are demonstrated in different dispersion regimes. Soliton dynamics depend strictly on the sign and magnitude of the group velocity dispersion (GVD) coefficient of each mode and the strength (coefficient) of the two-photon absorption. The two-photon absorption leads to the soliton collapse, enhances the neighboring soliton interaction in both modes, and increases the energy exchange between the two modes. Finally, an available control is proposed to suppress the effects by the use of the nonlinear gain with filter.
Keywords:  soliton      two-mode fiber      two-photon absorption      nonlinear gain      filter  
Received:  09 July 2019      Revised:  19 September 2019      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.79.Gn (Optical waveguides and couplers)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
Corresponding Authors:  Qianying Li     E-mail:  qianyingli1995@163.com,qili6121@uni.sydney.edu.au

Cite this article: 

Qianying Li(李倩颖) Soliton evolution and control in a two-mode fiber with two-photon absorption 2020 Chin. Phys. B 29 014204

[1] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon Press)
[2] Li H and Wang D N 2001 Opt. Commun. 191 405
[3] Li J H, Chan H N, Chiang K S and Chow K W 2015 Commun. Nonlinear Sci. Numer. Simul. 2828
[4] Li H, Wang T and Huang D X 2005 Phys. Lett. A 341 331
[5] Saitoh K and Matsuo S 2016 J. Lightwave Technol. 34 55
[6] Radosavljevic A, Danicic A, Petrovic J, Maluckov A and Haziewski L 2016 J. Opt. Soc. Am. B 322520
[7] Sillard P, Molin D, Bigot-Astruc M, Amezcua-Correa Ade, Jongh K and Achten F 2016 J. Lightwave Technol. 34 1672
[8] Guo F, Lu D, Zhang R, Wang H, Wang W and Ji C 2016 Chin. Phys. Letts. 33 024203
[9] Wang W, Bi X, Wang J, Qu Y, Han Y, Zhou G and Qi Y 2016 Chin. Phys. B 25 074206
[10] Rademacher G and Petermann K 2016 J. Lightwave Technol. 34 2280
[11] Tsang H K, Wong C S, Liang T K, Day E, Roberts S W, Harpin A, Drake J and Asghari M 2002 Appl. Phys. Lett. 80 416
[12] Sarma A K, Saha M and Biswas A 2010 Opt. Eng. 49 035001
[13] Mumtaz S, Essiambre R J and Agrawal G P 2013 J. Lightwave Technol. 31 398
[14] Li J H, Ren H D, Pei S X, Cao Z L and Xian F L 2016 Chin. Phys. B 25 124208
[15] Li H, Wang T J and Huang D X 2004 Chin. Phys. B 13 01033
[16] Li H, Wang T J, Huang D X and Wang D N 2004 Chin. Phys. B 13 01447
[17] Chiang K S 1986 J. Lightwave Technol. 4 980
[18] Shibata N, Ohashi M, Maruyama R and Kuwaki N 2015 Opt. Rev. 22 65
[19] Matsumoto M, Akagi Y and Hasegawa A 1997 J. Lightwave Technol. 15 584
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[7] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[8] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[9] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[10] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[11] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[12] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[13] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[14] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[15] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
No Suggested Reading articles found!