Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124207    DOI: 10.1088/1674-1056/ab5278
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells

H Noverola-Gamas1,2, L M Gaggero-Sager3, O Oubram4
1 Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México;
2 División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Cunduacán 8660, México;
3 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México;
4 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
Abstract  In the framework of the Thomas-Fermi (TF) approach, a model for the p-type double-δ-doped (DDD) system in GaAs is presented. This model, unlike other works in the literature, takes into account that the Poisson equation associated with the system is nonlinear. The electronic structure is calculated for heavy and light holes. The changes in the electronic structure result of the distance d between the doped layers are studied. In particular, the relative absorption coefficient as well as the relative refractive index change is calculated as a function of the incident photon energy for heavy holes. The effect of the interlayer distance exhibits, in the absorption coefficient, a red shift of the peak position and a decrease in amplitude when the distance increases. In addition, the relative refractive index change node has a red shift as well as the interlayer distance increases. The calculations show that the effect of the separation between layers has a greater influence on the linear terms. These results are very important for theoretical calculations and engineering of optical and electronic devices based in δ-doped GaAs.
Keywords:  double delta-doping      p-type GaAs layers      electronic structure      Thomas-Fermi approach      nonlinear optical properties  
Received:  25 September 2019      Revised:  26 October 2019      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.21.Fg (Quantum wells)  
Fund: Project supported by PISA 2016-1 UJAT and PRODEP Folio UJAT-245 of México.
Corresponding Authors:  L M Gaggero-Sager     E-mail:  lgaggero@uaem.mx

Cite this article: 

H Noverola-Gamas, L M Gaggero-Sager, O Oubram Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells 2019 Chin. Phys. B 28 124207

[35] Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Surf. Sci. 537 75
[1] Ruan X, Fang H, Zhang F and Zhang W 2018 Ferroelectrics 530 1
[36] Ahn D and Chuang S 1987 IEEE J. Quantum Electron. 23 2196
[2] de Wergifosse M and Grimme S 2019 Chem. Phys. 150 094112
[37] West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156
[3] Mattana R, George J M, Jaffrés H, Van Dau F N, Fert A, Lépine B, Guivarc'h A and Jézéquel G 2003 Phys. Rev. Lett. 90 166601
[38] Erskine D J, Taylor A J and Tang C L 1984 Appl. Phys. Lett. 45 54
[4] Yang J X and Wei S H 2019 Chin. Phys. B 28 086106
[39] Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010
[5] Seifert G, Porezag D and Frauenheim T 1996 Int. J. Quantum Chem. 58 185
[40] J Rojas-Briseño J G, Martínez-Orozco J C, Rodríguez-Vargas I, Mora-Ramos M E and Duque C A 2014 Phys. Status Solidi B 251 415
[6] Lundqvist S and March N H 1983 Theory of the Inhomogeneous Electron Gas (New York: Plenum) Chap. 1 p. 2
[41] Ozturk E 2010 Chin. Phys. Lett. 27 077302
[7] Martínez-Orozco J C, Rojas-Briseño J G, Rodríguez-Magdaleno K A, Rodríguez-Vargas I, Mora-Ramos M E, Restrepo R L, Ungan F, Kasapoglu E and Duque C A 2017 Physica B 525 30
[42] Oubram O, Navarro O, Gaggero-Sager L M, Martínez-Orozco J C and Rodríguez-Vargas I 2012 Solid State Sci. 14 440
[8] Ungan F, Martínez-Orozco J C, Restrepo R L and Mora-Ramos M E 2019 Optik 185 881
[43] Oubram O, Navarro O, Rodriguez-Vargas I, Gaggero-Sager L M and Noverola-Gamas H 2019 Superlattice Microst. 127 157
[9] Ungan F, Pal S, Bahar M K and Mora-Ramos M E 2019 Superlattice Microst. 130 76
[10] Oubram O, Rodríguez-Vargas I, Gaggero-Sager L M, Cisneros-Villalobos L, Bassam A, Velásquez-Aguilar J G and Limón M 2016 Superlattice Microst. 100 867
[11] Liao J H, Zeng Q and Yuan M H 2018 Acta Phys. Sin. 67 236101 (in Chinese)
[12] Wood C E, Metze G and Eastman L F 1980 J. Appl. Phys. 51 383
[13] Duque C A, Akimov V, Demediuk R, Belykh V, Tiutiunnyk A, Morales A L, Restrepo R L, Mora-Ramos M E, Fomina O and Tulupenko V 2015 Superlattice Microst. 87 125
[14] Perenzoni M and Paul D J 2014 Physics And Applications of Terahertz Radiation (Netherlands: Springer) Chap 1 p. 12
[15] Ozturk O, Ozturk E and Elagoz S 2019 Chin. Phys. Lett. 36 067801
[16] Schubert E F, Fischer A and Ploog K 1986 IEEE Trans. Electron. Devices 33 625
[17] Schubert E F 1990 J. Vac. Sci. Technol. A 8 2980
[18] Bahrami A, Dehdast M, Mohammadnejad S and Ghavifekr H B 2019 Chin. Phys. B 28 046102
[19] Xiaohao Z, Ning L and Wei L 2019 Chin. Phys. B 28 027801
[20] Sun T J, Qian X, Shang Y X, Liu J, Wang K Y and Ji Y 2018 Acta Phys. Sin. 67 184204 (in Chinese)
[21] Vigneau F, Mizokuchi R, Zanuz D, Huang X, Tan S, Maur R, Frolov S, Sammak A, Scappucci G, Lefloch F and de Franceschi S 2019 Nano Lett. 19 1023
[22] Canedy C, Bewley W, Merritt C, Kim C, Kim M, Warren M, Jackson E, Nolde J, Affouda C, Aifer E, Vurgaftman I and Meyer J 2019 Opt. Express 27 3771
[23] Muhammad U, Urooj M, Dong-Guang Z, Dong-Pyo H, Muhammad R and Nazeer M 2019 Appl. Sci. 9 1
[24] Cong H, Yang F, Xue C, Yu K, Zhou L, Wang N, Cheng B and Wang Q 2018 Small 14 1704414
[25] Wang Y L, Li P X, Xu S R, Zhou X W, Zhang X Y, Jiang S Y, Huang R X, Liu Y, Zi Y L, Wu J X and Hao Y 2019 Chin. Phys. B 28 038502
[26] Nag B R 2002 Physics of Quantum Well Devices (New York: Kluwer Academic Publishers) Chap 8 p. 202
[27] Razeghi M, Esake L and von Klitzing K 2013 Wonder Nanotechnol.: Quantum Optoelectronic Devices and Applications (Washington: SPIE Press) Chap 6 p. 143
[28] Patil P K, Luna E, Matsuda T, Yamada K, Kamiya K, Ishikawa F and Shimomura S 2017 Nanotechnology 28 105702
[29] Zheng X, Carns T K, Wang K L and Wu B 1993 Appl. Phys. Lett. 62 504
[30] Martínez-Orozco J C, Rodríguez-Magdaleno K A, SuárezL ópez J R, Duque C A and Restrepo R L 2016 Superlattice Microst. 92 166
[31] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Int. J. Mod. Phys. B 33 1950215
[32] Rodríguez-Vargas I and Gaggero-Sager L M 2004 Rev. Mex. Fis. 50 614
[33] Rodríguez-Vargas I and Gaggero-Sager L M 2005 Microelectron. J. 36 404
[34] Carter D J, Warschkow O, Marks N A and McKenzie D R 2013 Phys. Rev. B 87 045204
[35] Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Surf. Sci. 537 75
[36] Ahn D and Chuang S 1987 IEEE J. Quantum Electron. 23 2196
[37] West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156
[38] Erskine D J, Taylor A J and Tang C L 1984 Appl. Phys. Lett. 45 54
[39] Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010
[40] J Rojas-Briseño J G, Martínez-Orozco J C, Rodríguez-Vargas I, Mora-Ramos M E and Duque C A 2014 Phys. Status Solidi B 251 415
[41] Ozturk E 2010 Chin. Phys. Lett. 27 077302
[42] Oubram O, Navarro O, Gaggero-Sager L M, Martínez-Orozco J C and Rodríguez-Vargas I 2012 Solid State Sci. 14 440
[43] Oubram O, Navarro O, Rodriguez-Vargas I, Gaggero-Sager L M and Noverola-Gamas H 2019 Superlattice Microst. 127 157
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!