ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells |
H Noverola-Gamas1,2, L M Gaggero-Sager3, O Oubram4 |
1 Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México; 2 División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Cunduacán 8660, México; 3 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México; 4 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México |
|
|
Abstract In the framework of the Thomas-Fermi (TF) approach, a model for the p-type double-δ-doped (DDD) system in GaAs is presented. This model, unlike other works in the literature, takes into account that the Poisson equation associated with the system is nonlinear. The electronic structure is calculated for heavy and light holes. The changes in the electronic structure result of the distance d between the doped layers are studied. In particular, the relative absorption coefficient as well as the relative refractive index change is calculated as a function of the incident photon energy for heavy holes. The effect of the interlayer distance exhibits, in the absorption coefficient, a red shift of the peak position and a decrease in amplitude when the distance increases. In addition, the relative refractive index change node has a red shift as well as the interlayer distance increases. The calculations show that the effect of the separation between layers has a greater influence on the linear terms. These results are very important for theoretical calculations and engineering of optical and electronic devices based in δ-doped GaAs.
|
Received: 25 September 2019
Revised: 26 October 2019
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.21.Fg
|
(Quantum wells)
|
|
Fund: Project supported by PISA 2016-1 UJAT and PRODEP Folio UJAT-245 of México. |
Corresponding Authors:
L M Gaggero-Sager
E-mail: lgaggero@uaem.mx
|
Cite this article:
H Noverola-Gamas, L M Gaggero-Sager, O Oubram Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells 2019 Chin. Phys. B 28 124207
|
[35] |
Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Surf. Sci. 537 75
|
[1] |
Ruan X, Fang H, Zhang F and Zhang W 2018 Ferroelectrics 530 1
|
[36] |
Ahn D and Chuang S 1987 IEEE J. Quantum Electron. 23 2196
|
[2] |
de Wergifosse M and Grimme S 2019 Chem. Phys. 150 094112
|
[37] |
West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156
|
[3] |
Mattana R, George J M, Jaffrés H, Van Dau F N, Fert A, Lépine B, Guivarc'h A and Jézéquel G 2003 Phys. Rev. Lett. 90 166601
|
[38] |
Erskine D J, Taylor A J and Tang C L 1984 Appl. Phys. Lett. 45 54
|
[4] |
Yang J X and Wei S H 2019 Chin. Phys. B 28 086106
|
[39] |
Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010
|
[5] |
Seifert G, Porezag D and Frauenheim T 1996 Int. J. Quantum Chem. 58 185
|
[40] |
J Rojas-Briseño J G, Martínez-Orozco J C, Rodríguez-Vargas I, Mora-Ramos M E and Duque C A 2014 Phys. Status Solidi B 251 415
|
[6] |
Lundqvist S and March N H 1983 Theory of the Inhomogeneous Electron Gas (New York: Plenum) Chap. 1 p. 2
|
[41] |
Ozturk E 2010 Chin. Phys. Lett. 27 077302
|
[7] |
Martínez-Orozco J C, Rojas-Briseño J G, Rodríguez-Magdaleno K A, Rodríguez-Vargas I, Mora-Ramos M E, Restrepo R L, Ungan F, Kasapoglu E and Duque C A 2017 Physica B 525 30
|
[42] |
Oubram O, Navarro O, Gaggero-Sager L M, Martínez-Orozco J C and Rodríguez-Vargas I 2012 Solid State Sci. 14 440
|
[8] |
Ungan F, Martínez-Orozco J C, Restrepo R L and Mora-Ramos M E 2019 Optik 185 881
|
[43] |
Oubram O, Navarro O, Rodriguez-Vargas I, Gaggero-Sager L M and Noverola-Gamas H 2019 Superlattice Microst. 127 157
|
[9] |
Ungan F, Pal S, Bahar M K and Mora-Ramos M E 2019 Superlattice Microst. 130 76
|
[10] |
Oubram O, Rodríguez-Vargas I, Gaggero-Sager L M, Cisneros-Villalobos L, Bassam A, Velásquez-Aguilar J G and Limón M 2016 Superlattice Microst. 100 867
|
[11] |
Liao J H, Zeng Q and Yuan M H 2018 Acta Phys. Sin. 67 236101 (in Chinese)
|
[12] |
Wood C E, Metze G and Eastman L F 1980 J. Appl. Phys. 51 383
|
[13] |
Duque C A, Akimov V, Demediuk R, Belykh V, Tiutiunnyk A, Morales A L, Restrepo R L, Mora-Ramos M E, Fomina O and Tulupenko V 2015 Superlattice Microst. 87 125
|
[14] |
Perenzoni M and Paul D J 2014 Physics And Applications of Terahertz Radiation (Netherlands: Springer) Chap 1 p. 12
|
[15] |
Ozturk O, Ozturk E and Elagoz S 2019 Chin. Phys. Lett. 36 067801
|
[16] |
Schubert E F, Fischer A and Ploog K 1986 IEEE Trans. Electron. Devices 33 625
|
[17] |
Schubert E F 1990 J. Vac. Sci. Technol. A 8 2980
|
[18] |
Bahrami A, Dehdast M, Mohammadnejad S and Ghavifekr H B 2019 Chin. Phys. B 28 046102
|
[19] |
Xiaohao Z, Ning L and Wei L 2019 Chin. Phys. B 28 027801
|
[20] |
Sun T J, Qian X, Shang Y X, Liu J, Wang K Y and Ji Y 2018 Acta Phys. Sin. 67 184204 (in Chinese)
|
[21] |
Vigneau F, Mizokuchi R, Zanuz D, Huang X, Tan S, Maur R, Frolov S, Sammak A, Scappucci G, Lefloch F and de Franceschi S 2019 Nano Lett. 19 1023
|
[22] |
Canedy C, Bewley W, Merritt C, Kim C, Kim M, Warren M, Jackson E, Nolde J, Affouda C, Aifer E, Vurgaftman I and Meyer J 2019 Opt. Express 27 3771
|
[23] |
Muhammad U, Urooj M, Dong-Guang Z, Dong-Pyo H, Muhammad R and Nazeer M 2019 Appl. Sci. 9 1
|
[24] |
Cong H, Yang F, Xue C, Yu K, Zhou L, Wang N, Cheng B and Wang Q 2018 Small 14 1704414
|
[25] |
Wang Y L, Li P X, Xu S R, Zhou X W, Zhang X Y, Jiang S Y, Huang R X, Liu Y, Zi Y L, Wu J X and Hao Y 2019 Chin. Phys. B 28 038502
|
[26] |
Nag B R 2002 Physics of Quantum Well Devices (New York: Kluwer Academic Publishers) Chap 8 p. 202
|
[27] |
Razeghi M, Esake L and von Klitzing K 2013 Wonder Nanotechnol.: Quantum Optoelectronic Devices and Applications (Washington: SPIE Press) Chap 6 p. 143
|
[28] |
Patil P K, Luna E, Matsuda T, Yamada K, Kamiya K, Ishikawa F and Shimomura S 2017 Nanotechnology 28 105702
|
[29] |
Zheng X, Carns T K, Wang K L and Wu B 1993 Appl. Phys. Lett. 62 504
|
[30] |
Martínez-Orozco J C, Rodríguez-Magdaleno K A, SuárezL ópez J R, Duque C A and Restrepo R L 2016 Superlattice Microst. 92 166
|
[31] |
Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Int. J. Mod. Phys. B 33 1950215
|
[32] |
Rodríguez-Vargas I and Gaggero-Sager L M 2004 Rev. Mex. Fis. 50 614
|
[33] |
Rodríguez-Vargas I and Gaggero-Sager L M 2005 Microelectron. J. 36 404
|
[34] |
Carter D J, Warschkow O, Marks N A and McKenzie D R 2013 Phys. Rev. B 87 045204
|
[35] |
Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Surf. Sci. 537 75
|
[36] |
Ahn D and Chuang S 1987 IEEE J. Quantum Electron. 23 2196
|
[37] |
West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156
|
[38] |
Erskine D J, Taylor A J and Tang C L 1984 Appl. Phys. Lett. 45 54
|
[39] |
Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010
|
[40] |
J Rojas-Briseño J G, Martínez-Orozco J C, Rodríguez-Vargas I, Mora-Ramos M E and Duque C A 2014 Phys. Status Solidi B 251 415
|
[41] |
Ozturk E 2010 Chin. Phys. Lett. 27 077302
|
[42] |
Oubram O, Navarro O, Gaggero-Sager L M, Martínez-Orozco J C and Rodríguez-Vargas I 2012 Solid State Sci. 14 440
|
[43] |
Oubram O, Navarro O, Rodriguez-Vargas I, Gaggero-Sager L M and Noverola-Gamas H 2019 Superlattice Microst. 127 157
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|