Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124202    DOI: 10.1088/1674-1056/ab4d48
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction

Meng Wu(吴萌)1,2,3, Xin-Yu Liu(刘欣宇)1,2,3, Gui-Yao Zhou(周桂耀)1,2,3, Chang-Ming Xia(夏长明)1,2,3, Bo-Yao Li(李波瑶)1,2,3, Zhi-Yun Hou(侯峙云)1,2,3
1 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University(SCNU), Guangzhou 510006, China;
2 Guangdong Province Key Laboratory of Nano-photonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China;
3 Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and Devices, South China Normal University, Guangzhou 510006, China
Abstract  A surface plasmon resonance (SPR) sensor with two orthogonal open loops based on microstructured optical fibers (MOFs) is introduced. The interaction between core mode and surface plasmon polariton (SPP) mode produced by two different metal films is studied. Full vector finite element method is used to analyze the coupling and sensing characteristics. The results show that there are three loss peaks near the Au/Ag film, and multi-peak calibration is achieved. Because of the positive and negative sensitivity of the amplitude, the sensor has strong anti-interference capability when the external environment changes. The sensor can detect the refractive index between 1.37 and 1.40, and the working wavelength is between 1600 nm and 2400 nm. Because the sensor has some excellent characteristics, it can be used in biochemical sensing, environmental detection, and other related fields.
Keywords:  surface plasma      biosensor      multi-component detection      photonic crystal fiber  
Received:  12 July 2019      Revised:  10 September 2019      Accepted manuscript online: 
PACS:  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  87.85.fk (Biosensors)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575066, 61527822, and 61735005), the Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030313333), the Science and Technology Program of Guangzhou City, China (Grant No. 201707010133), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017KZ010201), the GDUPS (2017), the Innovation Project of Graduate School of South China Normal University (Grant No. 2018LKXM040), and the SCNU Study Abroad Program for Elite Postgraduate Students, China.
Corresponding Authors:  Zhi-Yun Hou     E-mail:  houzhiyun@163.com

Cite this article: 

Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云) Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction 2019 Chin. Phys. B 28 124202

[1] Brolo A G 2012 Nat. Photon. 6 709
[2] Aruna Gandhi M S, Chu S, Senthilnathan K, Babu P R, Nakkeeran K and Li Q 2019 Appl. Sci. 9 949
[3] Rifat A A, Mahdiraji G A, Sua Y M, Ahmed R, Shee Y G and Adikan F R M 2016 Opt. Express 24 2485
[4] Carrascosa L G, Sina A A I, Palanisamy R, Sepulveda B, Otte M A, Rauf S, Shiddiky M J A and Trau M 2014 Chem. Commun. (Camb.) 50 3585
[5] Polley N, Basak S, Hass R and Pacholski C 2019 Biosens. Bioelectron. 132 368
[6] Guerreiro A, Santos D F and Baptista J M 2019 Sensors 19 1772
[7] Rifat A A, Ahme R, Yetisen A K, Butt H, Sabouri A, Mahdiraji G A, Yun S H and Adikan F R M 2017 Sens. Actuators B-Chem. 243 311
[8] Zhao Y, Peng Y, Chen M Q, Tonga R J 2018 Sens. Actuators B-Chem. 263 822
[9] Zhang X J, Wu Z, Liu F, Fu Q Q, Chen X Y, Xu J, Zhang Z C, Huang Y Y, Tang Y, Guo T and Albert J 2018 Biomed. Opt. Express 9 1735
[10] Yang X C, Lu Y, Liu B L and Yao J Q 2017 IEEE Photon. J. 10 1
[11] Yang Z, Xia L, Li C, Chen X and Liu D M 2019 Opt. Commun. 430 195
[12] Gao S, Chen S S and Lu Q H 2019 Langmuir 35 1040
[13] Chillcce E F, Cordeiro C M B, Barbosa L C and Brito Cruz C H 2006 J. Non-Cryst. Solids 352 3423
[14] Li B Y, Sheng Z C, Wu M, Liu X Y, Zhou G Y, Liu J T, Hou Z Y and Xia C M 2018 Opt. Lett. 43 5070
[15] Xia Y, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y and Li C 2010 J. Opt. 12 015005
[16] Lee H, Schmidt M, Tyagi H, Sempere L and Russell P 2008 Appl. Phys. Lett. 93 111102
[17] Rioux D, Valliéres S, Besner S, Muñoz P, Mazur E and Meunier M 2014 Adv. Opt. Mater. 2 176
[18] Han Y H, Xia L X and Liu D M 2014 Chin. Phys. B 23 104219
[19] Fan Z K, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
[20] Gangwar R K and Singh V K 2017 Optik 12 1367
[21] Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J and Mahamd Adikan F R 2016 Procedia Eng. 140 1
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[6] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[7] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[8] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[9] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[10] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[11] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[12] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[13] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[14] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[15] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
No Suggested Reading articles found!