ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions |
Xin-Jun Zhao(赵新军)1,2, Zhi-Fu Gao(高志福)3 |
1 Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, YiLi Normal University, Yining 835000, China; 2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 3Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China |
|
|
Abstract By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide) (PNIPAM) brushes in sodium halide solutions. After considering PNIPAM-water hydrogen bonds, water-anion hydrogen bonds, and PNIPAM-anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: NaCl >NaBr >NaI. PNIPAM-water hydrogen bonds are affected by water-anion hydrogen bonds and PNIPAM-anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.
|
Received: 05 September 2015
Revised: 13 February 2016
Accepted manuscript online:
|
PACS:
|
47.27.eb
|
(Statistical theories and models)
|
|
05.65.+b
|
(Self-organized systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21264016, 11464047, and 21364016) and the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2015211C298). |
Corresponding Authors:
Xin-Jun Zhao
E-mail: zhaoxinjunzxj@163.com
|
Cite this article:
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福) Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions 2016 Chin. Phys. B 25 074703
|
[1] |
Jhon Y K, Bhat R R, Jeong C, Rojas O J, Szleifer I and Genzer J 2006 Macromol. Rapid Commun. 27 697
|
[2] |
Liao K S, Fu H, Wan A, Batteas J D and Bergbreiter D E 2009 Langmuir 25 26
|
[3] |
Pelton R 2010 J. Colloid Interface Sci. 348 673
|
[4] |
Alf M E, Hatton T A and Gleason K K 2011 Langmuir 27 10691
|
[5] |
Xue C Y, Yonet-Tanyeri N, Brouette N, Brouette, Sferrazza M, Braun P V and Leckb D E 2011 Langmuir 27 8810
|
[6] |
Wang T, Liu G M, Zhang G Z and Craig V S J 2012 Langmuir 28 1893
|
[7] |
Naini C A, Thomas M, Franzka S, Ulbricht M and Hartmann N 2013 Macromol. Rapid Commun. 4 17
|
[8] |
SugawaraY, Tamaki T, Ohashi H and Yamaguchi T 2013 Soft Matter 9 3331
|
[9] |
Alves S P C, Pinheiro J P, Farinha J P S and Leermakers F A M 2014 J. Phys. Chem. B 118 3192
|
[10] |
Lamproua A, Gavriilidoua A F M, Stortia G, Soos M and Morbidelli M 2015 J. Chromatogr. A 1047 90
|
[11] |
Matsuguchi M, Takaoka K and Kai H 2015 Sens. Actuat. B 208 106
|
[12] |
Zhao X J, Gao Z F and Jiang Z Y 2015 Macromol. Theory Simul. 24 460
|
[13] |
Song W Q, Liu L D and Liu G M 2015 Soft Matter 11 5940
|
[14] |
Tiktopulo E I, Uversky V N, Lushchik V B, Klenin S I, Bychkova V E and Ptitsyn O B 1995 Macromolecules 28 7519
|
[15] |
Patra L, Vidyasagar A and Toomey R 2011 Soft Matter 7 6061
|
[16] |
Maeda Y, Higuchi T and Ikeda I 2000 Langmuir 16 7503
|
[17] |
Fu H, Hong X T, Wan A, Batteas J D and Bergbreiter D E 2010 ACS Appl. Mater. Interfaces 2 452
|
[18] |
Zhang Y J, Furyk S, Bergbreiter D E and Cremer P S 2005 J. Am. Chem. Soc. 127 14505
|
[19] |
Du H B, Wickramasinghe R and Qian X H 2010 J. Phys. Chem. B 114 16594
|
[20] |
Algaer E A and van der Veg N F A 2011 J. Phys. Chem. B 115 13781
|
[21] |
Okur H I, Kherb J and Cremer P S 2013 J. Am. Chem. Soc. 135 5062
|
[22] |
Long Y C, Wang T, Liu L D, Liu G M and Zhang G Z 2013 Langmuir 29 3645
|
[23] |
Liu L D, Shi Y, Liu C, Wang T, Liu G M and Zhang G Z 2014 Soft Matter 10 2856
|
[24] |
Liu L D, Wang T, Liu C, Lin K, Ding Y W, Liu G M and Zhang G Z 2013 J. Phys. Chem. B 117 2535
|
[25] |
Xu Y and Liu G M 2014 J. Phys. Chem. B 118 7450
|
[26] |
Liu L D, Wang T, Liu C, Lin K, Ding Y W, Liu G M and Zhang G Z 2013 J. Phys. Chem. B 117 10936
|
[27] |
Heyda J and Dzubiella J 2014 J. Phys. Chem. B 118 10979
|
[28] |
Szleifer I and Carignano M A 1996 AdV. Chem. Phys. 94 165
|
[29] |
Carignano M A and Szleifer I 1993 J. Chem. Phys. 98 5006
|
[30] |
Szleifer I and Carignano M A 2000 Macromol. Rapid Commun. 21 423
|
[31] |
You X Y, Zheng X J and Zheng J R 2007 Acta Phys. Sin. 56 2323 (in Chinese)
|
[32] |
Zhao X J, Gao Z F, Jiang Z Y 2015 Chin. Phys. B 24 044701
|
[33] |
Tamai Y, Tanaka H and Nakanishi K 1996 Macromolecules 29 6750
|
[34] |
Dormidontova E E 1998 Macromolecules 31 2649
|
[35] |
Ren C L, Nap R J and Szleifer I 2008 J. Phys. Chem. B 112 16238
|
[36] |
Ren C L, Tian W D, Szleifer I and Ma Y Q 2011 Macromolecules 44 1719
|
[37] |
Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
|
[38] |
Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
|
[39] |
Fujishige S, Kubota K and Ando I 1989 J. Phys. Chem. 93 3313
|
[40] |
Furyk S, Zhang Y, Ortiz-Acosta D, Cremer P S and Bergbreiter D E 2006 J. Polymer Sci.: Part A: Polym. Chem. 44 1492
|
[41] |
Yang L J, Fan Y B and Gao Y Q 2011 J. Phys. Chem. B 115 12456
|
[42] |
Collins K D 2004 Methods 34 300
|
[43] |
Salis A and Ninham B W 2014 Chem. Soc. Rev. 43 7358
|
[44] |
Faure M, Bassereau P, Carignano M A, Szleifer I, Gallot Y and Andelman D 1998 Eur. Phys. J. B 3 365
|
[45] |
Cho Y H, Zhang Y J, Christensen T, Sagle L B, Chilkoti A and Cremer P S 2008 J. Phys. Chem. B 112 13765
|
[46] |
Zhang Y J and Cremer P S 2009 Proc. Natl. Acad. Sci. USA 106 15249
|
[47] |
Pastoor K J and Rice C V 2012 J. Polym. Sci. A: Polym. Chem. 50 1374
|
[48] |
Wang T, Long Y C, Liu L D, Wang X W, Craig V S J, Zhang G Z and Liu G M 2014 Langmuir 30 12850
|
[49] |
Zou L Y, Bai J S, Li B Y, Tan D W, Li P and Liu C Li 2008 Chin. Phys. B 17 1034
|
[50] |
Zhang Y J and Wang Z Z 2009 Acta Phy. Sin. 58 6074 (in Chinese)
|
[51] |
Wu J C, Qin S G and Wang Y 2009 Chin. Phys. Lett. 26 084702
|
[52] |
Wu J C, Qin S G and Lv X M 2010 Chin. Phys. Lett. 27 034701
|
[53] |
Tagliazucchi M, Rabin Y and Szleifer I 2011 J. Am. Chem. Soc. 133 17753
|
[54] |
Wang B B, Cui G X, Xu C X and Zhang Z S 2012 Chin. Phys. Lett. 29 104701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|