|
|
Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train |
Qiu-Nan Tong(佟秋男)1,2, De-Hou Fei(费德厚)1,2, Zhen-Zhong Lian(廉振中)1,2, Hong-Xia Qi(齐洪霞)1,2, Sheng-Peng Zhou(周胜鹏)1, Si-Zuo Luo(罗嗣佐)1, Zhou Chen(陈洲)1,2, Zhan Hu(胡湛)1,2 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China |
|
|
Abstract Coherent control of fragmentation of CH3I using shaped femtosecond pulse train is investigated. The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I+ under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse. We discuss the control mechanism of dissociation processes with coherent interference in time domain. A three-pulse control model is proposed to explain the counterintuitive experimental results.
|
Received: 30 April 2019
Revised: 25 June 2019
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374124). |
Corresponding Authors:
Zhou Chen, Zhou Chen
E-mail: phy_cz@jlu.edu.cn;huzhan@jlu.edu.cn
|
Cite this article:
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛) Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train 2019 Chin. Phys. B 28 093201
|
[1] |
Ma R, Wu C, Xu N, Huang J, Yang H and Gong Q 2005 Chem. Phys. Lett. 415 58
|
[2] |
Eppink A and Parker D H 1997 Rev. Sci. Instrum. 68 3477
|
[3] |
Ashfold M N, Nahler N H and Orr-Ewing A J 2006 Phys. Chem. Chem. Phys. 8 26
|
[4] |
Hertel I V and Radloff W 2006 Rep. Prog. Phys. 69 1897
|
[5] |
Rijs A M, Janssen M H, Chrysostom E H and Hayden C C 2004 Phys. Rev. Lett. 92 123002
|
[6] |
Gessner O, Lee A M and Shaffer J P 2006 Science 311 219
|
[7] |
Witte T, Hornung T, Windhorn L, Proch D and Kompa K L 2003 J. Chem. Phys. 118 2021
|
[8] |
Johnsson P, Mauritsson J, Remetter T, Huillier A L and Schafer K J 2007 Phys. Rev. Lett. 99 233001
|
[9] |
Locht R, Dehareng D, Hottmann K, Jochims H W, Baumgartel H and Leyh B 2010 J. Phys. B:At. Mol. Opt. Phys. 43 105101
|
[10] |
Poullain S M, Chicharro D V and Banares L 2017 Phys. Chem. Chem. Phys. 19 7886
|
[11] |
Hu L L, Zhou Z M, Dong C W and Zhu Q H 2012 J. Chem. Phys. 137 144302
|
[12] |
Wei Z R, Li J L, See S T and Loh Z H 2017 J. Phys. Chem. Lett. 8 6067
|
[13] |
Wei Z R, Li J L, Yang M H and Loh Z H 2017 Nat. Comm 8 735
|
[14] |
Yazawa H, Tanabe T, Okamoto T, Yamanaka M and Kannari F 2006 J. Chem. Phys. 124 204314
|
[15] |
Breuning H G, Lauer A and Weitzel K M 2006 J. Phys. Chem. A 110 20
|
[16] |
Singh K P, Kenfack A, Rost J M and Pfeifer T 2018 Phys. Rev. A. 97 033406
|
[17] |
Graham P, Menkir G and Levis R J 2003 Spectrochim. Acta Part. B 58 1097
|
[18] |
Sussman B J, Townsend D, Ivanov M Y and Stolow A 2006 Science 314 278
|
[19] |
Corrales M E, GonzálezVázquez J, Balerdi G, Solá I R, Nalda R and Banres L 2014 Nat. Chem. 6 785
|
[20] |
Thanopulos I and Shapiro M 2006 J. Chem. Phys. 125 133314
|
[21] |
Katharine M and Rabitz H 2012 Nat. Chem. 4 72
|
[22] |
Geremia J M, Zhu W S and Rabitz H 2000 J. Chem. Phys. 113 10841
|
[23] |
Xie X, Doblhoff-Dier K and Kitzler M 2012 Phys. Rev. Lett. 109 243001
|
[24] |
Strobel A, Lochschmidt A, Fischer I, Niedner-Schatteburg G and Bondybey V E 1993 J. Chem. Phys. 99 733
|
[25] |
Trippel S, Stei M, Eichhorn C, Otto R, Hlavenka P, Weidemuller M and Wester R 2011 J. Chem. Phys. 134 104306
|
[26] |
Gitzinger G, Corrales M E and Banares L 2010 J. Chem. Phys. 132 234313
|
[27] |
Felix A, Burt M, Amini K and Rolles D 2018 J. Chem. Phys. 149 204313
|
[28] |
Wei Z R, Tian L, Li J L and Loh Z H 2018 J. Phys. Chem. Lett. 9 5742
|
[29] |
Zhou C, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B 24 043303
|
[30] |
Dela Cruz J M, Pastirk I, Lozovoy V V, Walowicz K A and Dantus M 2004 J. Phys. Chem. A 108 53
|
[31] |
Lozovoy V V, Pastirk I and Dantus M 2004 Opt. Lett. 29 775
|
[32] |
Liu H, Yang Z, Gao Z and Tang Z 2007 J. Chem. Phys. 126 044316
|
[33] |
Wang Y, Zhang S, Wei Z and Zhang B 2008 J. Phys. Chem. A 112 3846
|
[34] |
Tong Q N, Lian Z Z, Qi H X, Chen Z and Hu zhan 2019 Chin. Phys. B 28 33201
|
[35] |
Song Y D, Chen Zhou, Sun C K and Hu Z 2013 Chin. Phys. B 22 013302
|
[36] |
Nalda R, Izquierdo J G, Dura J and Banares L 2007 J. Chem. Phys. 126 021101
|
[37] |
Corrales M E, GonzálezV ázquez J and Banres L 2012 J. Phys. Chem. A 116 2669
|
[38] |
Luo S Z, Hu W H, Yu J Q, Li X K and Ding D J 2017 J. Phys. Chem. A 121 6547
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|