Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094203    DOI: 10.1088/1674-1056/ab327c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser

Yan Zhou(周延)1, Renli Zhang(张仁栗)2, Xia Li(李夏)2, Peiwen Kuan(关珮雯)2, Dongyu He(贺冬钰)3, Jingshan Hou(侯京山)3, Yufeng Liu(刘玉峰)3, Yongzheng Fang(房永征)3, Meisong Liao(廖梅松)2
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  

CsPbBr3 nanocrystal is used as the saturable absorber (SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity. The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm2, and 5.9%, respectively. In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps. The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm. The maximum output power is 110 mW with slope efficiency of 7.1%. Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.

Keywords:  nanocrystal      saturable absorber      mode-locking      fiber laser  
Received:  18 March 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.70.-a (Optical materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFB0504500), the National Natural Science Foundation of China (Grant Nos. 51472162, 51672177, and 61475171), and the Talent Introduction Research Project of Shanghai Institute of Technology, China (Grant No. YJ 2018-8).

Corresponding Authors:  Yongzheng Fang, Yongzheng Fang     E-mail:  fyz1003@sina.com;liaomeisong@siom.ac.cn

Cite this article: 

Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松) CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser 2019 Chin. Phys. B 28 094203

[1] Keller U 2003 Nature 424 831
[2] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[3] Mourou G, Brocklesby B, Tajima T and Limpert J 2013 Nat. Photon. 7 258
[4] Lin H F, Zhang G, Zhang L Z, Lin Z B, Pirzio F, Agnesi A, Petrov V and Chen W D 2017 Opt. Mater. Express 7 3791
[5] Li W S, Zhu C H, Rong X F, Wu J J, Xu H Y, Wang F Q, Luo Z C and Cai Z P 2018 J. Lightwave Technol. 36 2694
[6] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[7] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[8] Liu X M and Cui Y D 2019 Adv. Photon. 1 016003
[9] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
[10] Luo Z C, Liu M, Liu H, Zheng X W, Luo A P, Zhao C J, Zhang H, Wen S C and Xu W C 2013 Opt. Lett. 38 5212
[11] Lee J and Lee J H 2018 Chin. Phys. B 27 094219
[12] Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[13] Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
[14] Mao D, Cui X Q, Gan X T, Li M K, Zhang W D, Lu H and Zhao J L 2018 IEEE J. Sel. Top. Quantum Electron. 24 1100406
[15] Liu M L, Ouyang Y Y, Hou H R, Lei M, Liu W J and Wei Z Y 2018 Chin. Phys. B 27 084211
[16] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
[17] Zhang R L, Wang J, Zhang X Y, Lin J T, Li X, Kuan P W, Zhou Y, Liao M S and Gao W Q 2019 Chin. Phys. B 28 014207
[18] Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
[19] Liu M, Jiang X F, Yan Y R, Wang X D, Luo A P, Xu W C and Luo Z C 2018 Opt. Commun. 406 85
[20] Luo H Y, Tian X L, Gao Y, Wei R F, Li J F, Qiu J R and Liu Y 2018 Photon. Res. 6 900
[21] Guo B, Wang S H, Wu Z X, Wang Z X, Wang D H, Huang H, Zhang F, Ge Y Q and Zhang H 2018 Opt. Express 26 22750
[22] Luo H Y, Kang Z, Gao Y, Peng H L, Li J F, Qin G S and Liu Y 2019 Opt. Express 27 4886
[23] Yang L L, Kang Z, Huang B, Li J, Miao L L, Tang P H, Zhao C J, Qin G S and Wen S C 2018 Opt. Lett. 43 5459
[24] Zhang H N and Liu J 2016 Opt. Lett. 41 1150
[25] Zhou Y, Zhao M, Wang S W, Hu C X, Wang Y, Yan S, Li Y, Xu J Q, Tang Y L, Gao L F, Wang Q and Zhang H L 2016 Opt. Lett. 41 1221
[26] Zhou Y, Hu Z P, Li Y, Xu J Q, Tang X S and Tang Y L 2016 Appl. Phys. Lett. 108 261108
[27] Muhammad A R, Ahmad M T, Zakaria R, Rahim H R A, Yusoff S F A Z, Hamdan K S, Yusof H H M, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 034205
[28] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
[29] Fu S G, Ouyang X Y, Li J J and Liu X J 2017 Chin. Phys. Lett. 34 044203
[30] Lv R D, Li L, Wang Y G, Chen Z D, Liu S C, Wang X, Wang J and Li Y F 2018 Chin. Phys. B 27 114214
[31] Sun Y J, Tu C Y, You Z Y, Liao J S, Wang Y Q and Xu J L 2018 Opt. Mater. Express 8 165
[32] Ming N, Tao S N, Yang W Q, Chen Q Y, Sun R Y, Wang C, Wang S Y, Man B Y and Zhang H N 2018 Opt. Express 26 9017
[33] Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M and Wei Z Y 2018 Photon. Res. 6 220
[34] Wang Y, Li X M, Song J Z, Xiao L, Zeng H B and Sun H D 2015 Adv. Mater. 27 7101
[35] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[36] Wang Y, Li X M, Zhao X, Xiao L, Zeng H B and Sun H D 2016 Nano Lett. 16 448
[37] Krishnakanth K N, Seth S, Samanta A and Rao S V 2018 Opt. Lett. 43 603
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[5] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[8] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[11] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[12] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[13] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[14] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[15] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
No Suggested Reading articles found!