1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
CsPbBr3 nanocrystal is used as the saturable absorber (SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity. The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm2, and 5.9%, respectively. In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps. The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm. The maximum output power is 110 mW with slope efficiency of 7.1%. Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
Fund:
Project supported by the National Key R&D Program of China (Grant No. 2018YFB0504500), the National Natural Science Foundation of China (Grant Nos. 51472162, 51672177, and 61475171), and the Talent Introduction Research Project of Shanghai Institute of Technology, China (Grant No. YJ 2018-8).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.