|
|
Tunable coupling between Xmon qubit and coplanar waveguide resonator |
He-Kang Li(李贺康)1,3, Ke-Min Li(李科敏)2, Hang Dong(董航)2, Qiu-Jiang Guo(郭秋江)2, Wu-Xin Liu(刘武新)2, Zhan Wang(王战)1,3, Hao-Hua Wang(王浩华)2, Dong-Ning Zheng(郑东宁)1,3,4 |
1 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing. Here, we design and characterize a tunable coupling element based on Josephson junction, which can be adapted to an all-to-all connected circuit architecture where multiple Xmon qubits couple to a common coplanar waveguide resonator. The coupling strength is experimentally verified to be adjustable from 0 MHz to about 40 MHz, and the qubit lifetime can still be up to 12 μs in the presence of the coupling element.
|
Received: 10 April 2019
Revised: 22 May 2019
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304300 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11725419 and 11434008), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
Corresponding Authors:
Hao-Hua Wang, Dong-Ning Zheng
E-mail: hhwang@zju.edu.cn;dzheng@iphy.ac.cn
|
Cite this article:
He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁) Tunable coupling between Xmon qubit and coplanar waveguide resonator 2019 Chin. Phys. B 28 080305
|
[1] |
You J Q and Nori F 2007 Physics Today 58 42
|
[2] |
Nielsen M A and Chuang I 2011 Quantum Computation Quantum Information, 10th edn. (Cambridge: Cambridge University Press) p. 47
|
[3] |
Devoret M H and Schoelkopf R J 2013 Science 339 1169
|
[4] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[5] |
Chiorescu I, Nakamura Y, Harmans C and Mooij J E 2003 Science 299 1869
|
[6] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[7] |
Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
|
[8] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Clel, A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
|
[9] |
Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
|
[10] |
Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W and Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
|
[11] |
Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
|
[12] |
Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66
|
[13] |
Song C, Xu K, Liu W, Yang C, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
|
[14] |
Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507
|
[15] |
Chen Y, Neill C, Roushan P, et al. 2014 Phys. Rev. Lett. 113 220502
|
[16] |
Geller M R, Donate E, Chen Y, Neill C, Roushan P and Martinis J M 2014 arXiv: 1405.1915[cond-mat,physics:quant-ph]
|
[17] |
Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
|
[18] |
Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195
|
[19] |
Dolan G J 1977 Appl. Phys. Lett. 31 337
|
[20] |
Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus J, O'Malley P, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T, Clel A and Martinis J 2014 Appl. Phys. Lett. 104 052602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|