Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074207    DOI: 10.1088/1674-1056/28/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Memory effect evaluation based on transmission matrix calculation

Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖)
College of Physics, Sichuan University, Chengdu 610065, China
Abstract  

The memory effect is a type of auto correlation observed in linear systems, which is widely used to control scattered light through thin scattering layers. We show that there exists a strong correlation among the optimized phase distributions of adjacent focal points in focusing through scattering media. The numeric simulation and experiment indicate that within the memory effect, the phase difference between the two adjacent focal points shows an optical phase fringe pattern, and the closer the adjacent focal points are, the wider the fringe pattern will be, corresponding to the tilting of a plane wave phase added onto the acquired optical phase distribution at the focal point. This effect can be utilized for achieving optimal phase distributions of focal point scanning without optical phase evaluation via the experiment, which has great potential application in imaging through the scattering medium.

Keywords:  scattering media      phase modulation      optical memory effect      focal point  
Received:  23 January 2019      Revised:  04 April 2019      Accepted manuscript online: 
PACS:  42.25.Hz (Interference)  
  42.30.Rx (Phase retrieval)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61675140 and 61377054) and Graduate Student's Research and Innovation Fund of Sichuan University, China (Grant No. 2018YJSY005).

Corresponding Authors:  Lin Pang     E-mail:  panglin_p@yahoo.com

Cite this article: 

Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖) Memory effect evaluation based on transmission matrix calculation 2019 Chin. Phys. B 28 074207

[1] Akbulut D, Huisman T J, van Putten E G, Vos W L and Mosk A P 2011 Opt. Express 19 4017
[2] Vellekoop I M and Mosk A P 2008 Opt. Commun. 281 3071
[3] Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309
[4] Fang L, Zhang C, Zuo H, Zhu J and Pang L 2017 Chin. Opt. Lett. 15 102901
[5] Vellekoop I M, Lagendijk A and Mosk A P 2010 Nat. Photon. 4 320
[6] Feng S, Kane C, Lee P A and Stone A D 1988 Phys. Rev. Lett. 61 834
[7] Freund I I, Rosenbluh M and Feng S 1988 Phys. Rev. Lett. 61 2328
[8] Katz O, Small E and Silberberg Y 2012 Nat. Photon. 6 549
[9] Fang L, Zuo H, Pang L, Yang Z, Zhang X and Zhu J 2018 Opt. Lasers Eng. 106 105
[10] Ghielmetti G and Aegerter C M 2012 Opt. Express 20 3744
[11] Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601
[12] Popoff S M, Lerosey G, Fink M, Boccara A C and Gigan S 2011 New J. Phys. 13 123021
[13] Patil M B, Okuyama Y, Ohkura Y, Toyabe T and Ihara S 1994 Solid-State Electron. 37 1359
[14] Tripathi S, Paxman R, Bifano T and Jr T K 2012 Opt. Express 20 16067
[15] Tao X, Bodington D, Reinig M and Kubby J 2015 Opt. Express 23 14168
[16] Conkey D B, Caravacaaguirre A M and Piestun R 2012 Opt. Express 20 1733
[17] Zhang X, Fang L, Zuo H, Du J, Gao F and Pang L 2018 Opt. Laser Technol. 103 373
[18] Judkewitz B, Horstmeyer R, Vellekoop I M, Papadopoulos I N and Yang C 2015 Nat. Phys. 11 684
[19] Osnabrugge G, Horstmeyer R, Papadopoulos I N, Judkewitz B and Vellekoop I M 2017 Optica 4 886
[20] Zuo H, Yang Z, Fang L and Luo S 2018 Laser Phys. 28 096202
[21] Vonk J and eds. T K 2012 The Oxford Handbook Of Comparative Evolutionary Psychology (New York: Oxford University Press) p. 574
[22] Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202 (in Chinese)
[23] Zhang C, Jia X and Xia C 2018 Chin. Phys. B 27 034206
[1] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[2] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[5] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[6] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[7] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[8] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[9] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[10] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[11] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[12] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[13] Electromagnetically induced grating in a thermal N-type four-level atomic system
Ya-Bin Dong(董雅宾), Jun-Yan Li(李俊燕), Zhi-Ying Zhou(周志英). Chin. Phys. B, 2017, 26(1): 014202.
[14] Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals
Liangyu Shi, Abhishek Kumar Srivastava, Vladimir G Chigrinov, Hoi-Sing Kwok. Chin. Phys. B, 2016, 25(9): 094212.
[15] Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber
Zhi-Yuan Huang(黄志远), Ye Dai(戴晔), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2016, 25(7): 074205.
No Suggested Reading articles found!