|
|
SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap |
Hao Li(李昊)1, Fanglin Chen(陈方林)2 |
1 School of Mechanical and Electrical Engineering and Information Engineering, University of Mining and Technology, Beijing 100083, China;
2 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China |
|
|
Abstract We consider a SU(3) spin-orbit coupled Bose-Einstein condensate confined in a harmonic plus quartic trap. The ground-state wave functions of such a system are obtained by minimizing the Gross-Pitaevskii energy functional, and the effects of the spin-dependent interaction and spin-orbit coupling are investigated in detail. For the case of ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a threefold-degenerate plane wave ground state with nontrivial spin texture. For the case of antiferromagnetic spin interaction, the system shows phase separation for weak SU(3) spin-orbit coupling, where three discrete minima with unequal weights in momentum space are selected, while hexagonal honeycomb lattice structure for strong SU(3) SOC, where three discrete minima with equal weights are selected.
|
Received: 13 June 2019
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
05.45.Yv
|
(Solitons)
|
|
05.30.Jp
|
(Boson systems)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Corresponding Authors:
Fanglin Chen
E-mail: fanglin-4444@163.com
|
Cite this article:
Hao Li(李昊), Fanglin Chen(陈方林) SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap 2019 Chin. Phys. B 28 070302
|
[33] |
Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
|
[1] |
Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
|
[34] |
Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[35] |
Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
|
[2] |
Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (Singapore: World Scientific Press)
|
[36] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[3] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V, and Spielman I B 2009 Nature 462 628
|
[37] |
Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
|
[4] |
Fu Z, Huang L, Meng Z, Wang P, Zhang L, Zhang S, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110
|
[38] |
Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
|
[5] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[39] |
Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
|
[6] |
Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
|
[40] |
Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
|
[7] |
Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
|
[41] |
Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
|
[8] |
Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
|
[42] |
Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
|
[9] |
Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[43] |
Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
|
[10] |
Anderson B M, Juzeliūnas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
|
[44] |
Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
|
[11] |
Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
|
[45] |
Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
|
[12] |
Meng Z M, Huang L H, Peng P, Li D H, Chen L C, Xu Y, Zhang C, Wang P and Zhang J 2016 Phys. Rev. Lett. 117 235304
|
[46] |
Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
|
[13] |
Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
|
[47] |
Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
|
[14] |
Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
|
[48] |
Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
|
[15] |
Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
|
[49] |
Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
|
[16] |
Li J and Liu W M 2018 Acta Phys. Sin. 67 110302 (in Chinese)
|
[50] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
|
[17] |
Yu Z Q and He L 2017 Acta Phys. Sin. 66 220301 (in Chinese)
|
[51] |
Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
|
[18] |
Zhang H, Chen F, Yu C, Sun L and Xu D 2017 Chin. Phys. B 26 080304
|
[52] |
Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
|
[19] |
Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A and Ji A C 2016 Phys. Rev. A 94 061602
|
[53] |
Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
|
[20] |
Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q and Ji A C 2018 Anns. Phys. 390 181
|
[21] |
Dalibard J, Gerbier F, Juzeliūnas F and Öhberg P 2011 Rev. Mod. Phys. 83 1523
|
[22] |
Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
|
[23] |
Zhai H 2015 Rep. Prog. Phys. 78 026001
|
[24] |
Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
|
[25] |
Zhang X F, Dong D F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
|
[26] |
Zhang X F, Kato M, Han W, Zhang S G and Saito H 2017 Phys. Rev. A 95 033620
|
[27] |
Sinha S and Shlyapnikov G V 2005 Phys. Rev. Lett. 94 150401
|
[28] |
Sánchez-Lotero P and Palacios J J 2005 Phys. Rev. A 72 043613
|
[29] |
Matveenko S I, Kovrizhin D, Ouvry S and Shlyapnikov G V 2009 Phys. Rev. A 80 063621
|
[30] |
Huang C C, Liu C H and Wu W C 2010 Phys. Rev. A 81 043605
|
[31] |
Hsueh C H, Horng T L, Gou S C and Wu W C 2011 Phys. Rev. A 84 023610
|
[32] |
Chen G P, Zhang Z Y, Dong B, Wang L X, Zhang X F and Zhang S G 2015 Phys. Lett. A 379 2193
|
[33] |
Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
|
[34] |
Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[35] |
Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
|
[36] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[37] |
Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
|
[38] |
Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
|
[39] |
Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
|
[40] |
Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
|
[41] |
Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
|
[42] |
Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
|
[43] |
Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
|
[44] |
Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
|
[45] |
Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
|
[46] |
Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
|
[47] |
Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
|
[48] |
Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
|
[49] |
Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
|
[50] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
|
[51] |
Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
|
[52] |
Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
|
[53] |
Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|