Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040502    DOI: 10.1088/1674-1056/28/4/040502
GENERAL Prev   Next  

Ratchet transport of overdamped particles in superimposed driven lattices

Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  

Ratchet transport of overdamped particles is investigated in superimposed driven lattices using Langevin dynamics simulations. It is found that noise can strongly affect the transport of the particles. When lattices driving dominates the transport, the noise acts as a disturbance of the directed transport and slows down the average velocity of the particles. When the driving phase has less impact on particle transport, Gaussian white noise can play a positive role. By simply modulating these two parameters, we can control efficiency and the direction of the directed currents.

Keywords:  Gaussian white noise      superimposed driven lattices      rectification  
Received:  11 November 2018      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  37.10.Jk (Atoms in optical lattices)  
  73.40.Ei (Rectification)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575064 and 11175067), the PCSIRT (Grant No. IRT1243), the GDUPS Project (2016), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030313433 and 2017A030313029), and the Innovation Project of Graduate School of South China Normal University.

Corresponding Authors:  Bao-Quan Ai     E-mail:  aibq@scnu.edu.cn

Cite this article: 

Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果) Ratchet transport of overdamped particles in superimposed driven lattices 2019 Chin. Phys. B 28 040502

[1] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weit M 2009 Science 326 1241
[2] Denisov S, Flach S and Hänggi P 2006 Europhys. Lett. 74 588
[3] Brown M and Renzoni F 2008 Phys. Rev. A 77 033405
[4] Gommers R, Lebedev V, Brown M and Renzoni F 2008 Phys. Rev. Lett. 100 040603
[5] Reimann P 2002 Phys. Rep. 361 57
[6] Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387
[7] Dittrich T and Dubeibe F L 2015 Phys. Rev. Lett. 114 094101
[8] Cubero D and Renzoni F 2016 Phys. Rev. Lett. 116 010602
[9] Bartussek R, H?nggi P and Kissner J G 1994 Europhys. Lett. 28 459
[10] Magnasco M O 1993 Phys. Rev. Lett. 71 1477
[11] Reimann P 1997 Phys. Rep. 290 149
[12] Bao J D and Zhuo Y Z 1998 Phys. Lett. A 239 228
[13] Reimann P, Bartussek R, Haussler R and Hänggi P 1996 Phys. Lett. A 215 26
[14] Doering C R, Horsthemke W and Riordan J 1994 Phys. Rev. Lett. 72 2984
[15] Bartussek R, Reimann P and Hänggi P 1996 Phys. Rev. Lett. 76 1166
[16] Büttiker M 1987 Zeitschrift für Physik B-Condens. Matter 68 161
[17] Usmani O, Lutz E and Büttiker M 2002 Phys. Rev. E 66 021111
[18] Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114
[19] Ai B Q 2009 Phys. Rev. E 80 011113
[20] Marchesoni F and Savel'ev S 2009 Phys. Rev. E 80 011120
[21] Ai B Q 2009 J. Chem. Phys. 131 054111
[22] Rousselet J, Salome L, Ajdari A and Prostt J 1994 Nature 370 446
[23] Mateos J L 2000 Phys. Rev. Lett. 84 258
[24] Schiavoni M, Sanchez-Palencia L, Renzoni F and Grynberg G 2003 Phys. Rev. Lett. 90 094101
[25] Gommers R, Douglas P, Bergamini S, Goonasekera M, Jones P H and Renzoni F 2005 Phys. Rev. Lett. 94 143001
[26] Faucheux L P, Bourdieu L S, Kaplan P D and Libchaber A J 1995 Phys. Rev. Lett. 74 1504
[27] Lee S H, Ladavac K, Polin M and Grier D G 2005 Phys. Rev. Lett. 94 110601
[28] Lopez B J, Kuwada N J, Craig E M, Long B R and Linke H 2008 Phys. Rev. Lett. 101 220601
[29] Denisov S, Zolotaryuk Y, Flach S and Yevtushenko O 2008 Phys. Rev. Lett. 100 224102
[30] Lebedev V and Renzoni F 2009 Phys. Rev. A 80 023422
[31] Arzola A V, Volke-Sep'ulveda K and Mateos J L 2011 Phys. Rev. Lett. 106 168104
[32] Gommers R, Bergamini S and Renzoni F 2005 Phys. Rev. Lett. 95 073003
[33] Mukhopadhyay A K, Xie T, Liebchen B and Schmelcher P 2018 Phys. Rev. E 97 050202
[34] Mukhopadhyay A K, Liebchen B and Schmelcher P 2018 Phys. Rev. Lett. 120 218002
[35] Mukhopadhyay A K, Liebchen B, Wulf T, and Schmelcher P 2016 Phys. Rev. E 93 052219
[1] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[2] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[3] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[4] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[5] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[6] Length dependence of rectification in organic co-oligomer spin rectifiers
Gui-Chao Hu(胡贵超), Zhao Zhang(张朝), Ying Li(李营), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2016, 25(5): 057308.
[7] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[8] Effect of interfacial coupling on rectification in organic spin rectifiers
Hu Gui-Chao (胡贵超), Zuo Meng-Ying (左梦莹), Li Ying (李营), Zhang Zhao (张朝), Ren Jun-Feng (任俊峰), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2015, 24(7): 077308.
[9] Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array
Wang Xiao-Bo (王小波), Li Yong (李勇), Yan Ling-Ling (闫玲玲), Li Xin-Jian (李新建). Chin. Phys. B, 2015, 24(10): 107304.
[10] Spin-excited states and rectification in an organic spin rectifier
Zuo Meng-Ying (左梦莹), Hu Gui-Chao (胡贵超), Li Ying (李营), Ren Jun-Feng (任俊峰), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2014, 23(8): 087306.
[11] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[12] Reversal of thermal rectification in one-dimensional nonlinear composite system
Zhan Si-Qi (詹斯琦), Huang Wei-Qing (黄维清), Huang Gui-Fang (黄桂芳). Chin. Phys. B, 2014, 23(11): 114401.
[13] Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field
Li Xue-Chao (李学超), Wang An-Min (王安民), Wang Zhao-Liang (王兆亮), Yang Yang (杨阳). Chin. Phys. B, 2012, 21(8): 087303.
[14] Effect of proportion on rectification in organic co-oligomer spin rectifiers
Hu Gui-Chao(胡贵超), Wang Hui(王辉), and Ren Jun-Feng(任俊峰). Chin. Phys. B, 2011, 20(7): 077306.
[15] Choice of optimal crystal-orientation for terahertz transceiver with zincblende crystal
Tian Xiao-Guang(田晓光), Ling Fu-Ri(凌福日), He Jian(何健), Liu Jin-Song(刘劲松), and Yao Jian-Quan(姚建铨) . Chin. Phys. B, 2011, 20(12): 124201.
No Suggested Reading articles found!