|
|
Ratchet transport of overdamped particles in superimposed driven lattices |
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果) |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Ratchet transport of overdamped particles is investigated in superimposed driven lattices using Langevin dynamics simulations. It is found that noise can strongly affect the transport of the particles. When lattices driving dominates the transport, the noise acts as a disturbance of the directed transport and slows down the average velocity of the particles. When the driving phase has less impact on particle transport, Gaussian white noise can play a positive role. By simply modulating these two parameters, we can control efficiency and the direction of the directed currents.
|
Received: 11 November 2018
Revised: 15 January 2019
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
73.40.Ei
|
(Rectification)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575064 and 11175067), the PCSIRT (Grant No. IRT1243), the GDUPS Project (2016), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030313433 and 2017A030313029), and the Innovation Project of Graduate School of South China Normal University. |
Corresponding Authors:
Bao-Quan Ai
E-mail: aibq@scnu.edu.cn
|
Cite this article:
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果) Ratchet transport of overdamped particles in superimposed driven lattices 2019 Chin. Phys. B 28 040502
|
[1] |
Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weit M 2009 Science 326 1241
|
[2] |
Denisov S, Flach S and Hänggi P 2006 Europhys. Lett. 74 588
|
[3] |
Brown M and Renzoni F 2008 Phys. Rev. A 77 033405
|
[4] |
Gommers R, Lebedev V, Brown M and Renzoni F 2008 Phys. Rev. Lett. 100 040603
|
[5] |
Reimann P 2002 Phys. Rep. 361 57
|
[6] |
Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387
|
[7] |
Dittrich T and Dubeibe F L 2015 Phys. Rev. Lett. 114 094101
|
[8] |
Cubero D and Renzoni F 2016 Phys. Rev. Lett. 116 010602
|
[9] |
Bartussek R, H?nggi P and Kissner J G 1994 Europhys. Lett. 28 459
|
[10] |
Magnasco M O 1993 Phys. Rev. Lett. 71 1477
|
[11] |
Reimann P 1997 Phys. Rep. 290 149
|
[12] |
Bao J D and Zhuo Y Z 1998 Phys. Lett. A 239 228
|
[13] |
Reimann P, Bartussek R, Haussler R and Hänggi P 1996 Phys. Lett. A 215 26
|
[14] |
Doering C R, Horsthemke W and Riordan J 1994 Phys. Rev. Lett. 72 2984
|
[15] |
Bartussek R, Reimann P and Hänggi P 1996 Phys. Rev. Lett. 76 1166
|
[16] |
Büttiker M 1987 Zeitschrift für Physik B-Condens. Matter 68 161
|
[17] |
Usmani O, Lutz E and Büttiker M 2002 Phys. Rev. E 66 021111
|
[18] |
Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114
|
[19] |
Ai B Q 2009 Phys. Rev. E 80 011113
|
[20] |
Marchesoni F and Savel'ev S 2009 Phys. Rev. E 80 011120
|
[21] |
Ai B Q 2009 J. Chem. Phys. 131 054111
|
[22] |
Rousselet J, Salome L, Ajdari A and Prostt J 1994 Nature 370 446
|
[23] |
Mateos J L 2000 Phys. Rev. Lett. 84 258
|
[24] |
Schiavoni M, Sanchez-Palencia L, Renzoni F and Grynberg G 2003 Phys. Rev. Lett. 90 094101
|
[25] |
Gommers R, Douglas P, Bergamini S, Goonasekera M, Jones P H and Renzoni F 2005 Phys. Rev. Lett. 94 143001
|
[26] |
Faucheux L P, Bourdieu L S, Kaplan P D and Libchaber A J 1995 Phys. Rev. Lett. 74 1504
|
[27] |
Lee S H, Ladavac K, Polin M and Grier D G 2005 Phys. Rev. Lett. 94 110601
|
[28] |
Lopez B J, Kuwada N J, Craig E M, Long B R and Linke H 2008 Phys. Rev. Lett. 101 220601
|
[29] |
Denisov S, Zolotaryuk Y, Flach S and Yevtushenko O 2008 Phys. Rev. Lett. 100 224102
|
[30] |
Lebedev V and Renzoni F 2009 Phys. Rev. A 80 023422
|
[31] |
Arzola A V, Volke-Sep'ulveda K and Mateos J L 2011 Phys. Rev. Lett. 106 168104
|
[32] |
Gommers R, Bergamini S and Renzoni F 2005 Phys. Rev. Lett. 95 073003
|
[33] |
Mukhopadhyay A K, Xie T, Liebchen B and Schmelcher P 2018 Phys. Rev. E 97 050202
|
[34] |
Mukhopadhyay A K, Liebchen B and Schmelcher P 2018 Phys. Rev. Lett. 120 218002
|
[35] |
Mukhopadhyay A K, Liebchen B, Wulf T, and Schmelcher P 2016 Phys. Rev. E 93 052219
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|