Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037503    DOI: 10.1088/1674-1056/28/3/037503
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
SPECIAL TOPIC—Spin manipulation in solids Prev   Next  

Spin torque nano-oscillators with a perpendicular spin polarizer

Cuixiu Zheng(郑翠秀)1, Hao-Hsau Chen(陈浩轩)2, Xiangli Zhang(张祥丽)2, Zongzhi Zhang(张宗芝)2, Yaowen Liu(刘要稳)1
1 Shanghai Key Laboratory for Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
Abstract  We present an overview in the understanding of spin-transfer torque (STT) induced magnetization dynamics in spin-torque nano-oscillator (STNO) devices. The STNO contains an in-plane (IP) magnetized free layer and an out-of-plane (OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations, which are based on the Landau-Lifshitz-Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field (or electric field) pulses.
Keywords:  spin torque nano-oscillators (STNOs)      spin-transfer torque effect      magnetic simulation  
Received:  08 January 2019      Revised:  25 January 2019      Accepted manuscript online: 
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  75.30.Ds (Spin waves)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB921501) and the National Natural Science Foundation of China (Grant Nos. 11774260, 51671057, and 11874120).
Corresponding Authors:  Yaowen Liu     E-mail:

Cite this article: 

Cuixiu Zheng(郑翠秀), Hao-Hsau Chen(陈浩轩), Xiangli Zhang(张祥丽), Zongzhi Zhang(张宗芝), Yaowen Liu(刘要稳) Spin torque nano-oscillators with a perpendicular spin polarizer 2019 Chin. Phys. B 28 037503

[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[2] Berger L 1996 Phys. Rev. B 54 9353
[3] Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
[4] Liu Y, Zhang Z, Freitas P P and Martins J L 2003 Appl. Phys. Lett. 82 2871
[5] Slaughter J M, Rizzo N D, Janesky J, Whig R, Mancoff F B, Houssameddine D, Sun J J, Aggarwal S, Nagel K, Deshpande S, Alam S M, Andre T and LoPresti P 2012 International Electron Devices Meeting, December 10-13, 2012, San Francisco, CA, pp. 29.3.1-29.3.4
[6] Huai Y 2018 AAPPS Bull. 18 33
[7] Silva T J and Rippard W H 2008 J. Magn. Magn. Mater. 320 1260
[8] Chen T, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Malm B G, Rusu A J and kerman 2016 Proc. IEEE 104 1919
[9] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[10] Rippard W H, Pufall M R, Kaka S, Russek S E and Silva T J 2004 Phys. Rev. Lett. 92 027201
[11] Pribiag V S, Krivorotov I N, Fuchs G D, Braganca P M, Ozatay O, Sankey J C, Ralph D C and Buhrman R A 2007 Nat. Phys. 3 498
[12] Hoefer M A, Sommacal M and Silva T J 2012 Phys. Rev. B 85 214433
[13] Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A and Åkerman J 2013 Science 339 1295
[14] Xiao D, Liu Y, Zhou Y, Mohseni S M, Chung S and Åkerman J 2016 Phys. Rev. B 93 094431
[15] Xiao D, Tiberkevich V, Liu Y H, Liu Y W, Mohseni S M, Chung S, Ahlberg M, Slavin A N, Åkerman J and Zhou Y 2017 Phys. Rev. B 95 024106
[16] Deac A M, Fukushima A, Kubota H, Maehara H, Suzuki Y, Yuasa S, Nagamine Y, Tsunekawa K, Djayaprawira D D and Watanabe N 2008 Nat. Phys. 4 803
[17] Ryo H, Hitoshi K, Sumito T, Shingo T, Kay Y, Akio F, Rie M, Hiroshi I and Shinji Y 2016 Appl. Phys. Express 9 053006
[18] Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nature 437 389
[19] Mancoff F B, Rizzo N D, Engel B N and Tehrani S 2005 Nature 437 393
[20] Slavin A N and Tiberkevich V S 2006 Phys. Rev. B 74 104401
[21] Pufall M R, Rippard W H, Russek S E, Kaka S and Katine J A 2006 Phys. Rev. Lett. 97 087206
[22] Chen X and Victora R H 2009 Phys. Rev. B 79 180402
[23] Tiberkevich V, Slavin A, Bankowski E and Gerhart G 2009 Appl. Phys. Lett. 95 262505
[24] Ruotolo A, Cros V, Georges B, Dussaux A, Grollier J, Deranlot C, Guillemet R, Bouzehouane K, Fusil S and Fert A 2009 Nat. Nanotech. 4 528
[25] Kendziorczyk T and Kuhn T 2016 Phys. Rev. B 93 134413
[26] Houshang A, Iacocca E, Durrenfeld P, Sani S R, Akerman J and Dumas R K 2016 Nat. Nanotech. 11 280
[27] Grollier J, Cros V and Fert A 2006 Phys. Rev. B 73 060409
[28] Chen H, Chang J and Chang C 2011 SPIN 01 1
[29] Chen H H, Lee C M, Zhang Z, Liu Y, Wu J C, Horng L and Chang C R 2016 Phys. Rev. B 93 224410
[30] Zeng Z, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K L and Jiang H 2012 ACS Nano 6 6115
[31] Hiroki M, Hitoshi K, Yoshishige S, Takayuki S, Kazumasa N, Yoshinori N, Koji T, Akio F, Alina M D, Koji A and Shinji Y 2013 Appl. Phys. Express 6 113005
[32] Tsunegi S, Yakushiji K, Fukushima A, Yuasa S and Kubota H 2016 Appl. Phys. Lett. 109 252402
[33] Kent A D, Özyilmaz B and del Barco E 2004 Appl. Phys. Lett. 84 3897
[34] Lee K J, Redon O and Dieny B 2005 Appl. Phys. Lett. 86 022505
[35] Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O and Dieny B 2007 Nat. Mater. 6 447
[36] Zeng Z, Finocchio G, Zhang B, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L and Jiang H 2013 Sci. Rep. 3 1426
[37] Guo P, Feng J, Wei H, Han X, Fang B, Zhang B and Zeng Z 2015 Appl. Phys. Lett. 106 012402
[38] Wang X, Feng J, Guo P, Wei H X, Han X F, Fang B and Zeng Z M 2017 J. Magn. Magn. Mater. 443 239
[39] Quinsat M, Tiberkevich V, Gusakova D, Slavin A, Sierra J F, Ebels U, Buda-Prejbeanu L D, Dieny B, Cyrille M C, Zelster A and Katine J A 2012 Phys. Rev. B 86 104418
[40] Tamaru S, Kubota H, Yakushiji K, Yuasa S and Fukushima A 2016 Sci. Rep. 5 18134
[41] Gusakova D, Quinsat M, Sierra J F, Ebels U, Dieny B, Buda-Prejbeanu L D, Cyrille M C, Tiberkevich V and Slavin A N 2011 Appl. Phys. Lett. 99 052501
[42] Slavin A and Tiberkevich V 2009 IEEE. Trans. Magn. 45 1875
[43] Manfrini M, Devolder T, Kim J V, Crozat P, Chappert C, Van Roy W and Lagae L 2011 J. Appl. Phys. 109 083940
[44] Zhang X, Chen H H, Zhang Z and Liu Y 2018 J. Magn. Magn. Mater. 452 458
[45] Choi H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C, Kim S I, Park S Y and Park C S 2015 Sci. Rep. 4 5486
[46] Liu Y and Zhang Z 2013 Sci. Chin. Phys. Mech. Astron. 56 184
[47] Li Z, Zhang S, Diao Z, Ding Y, Tang X, Apalkov D M, Yang Z, Kawabata K and Huai Y 2008 Phys. Rev. Lett. 100 246602
[48] Sankey J C, Cui Y T, Sun J Z, Slonczewski J C, Buhrman R A and Ralph D C 2008 Nat. Phys. 4 67
[49] Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Ando K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D, Watanabe N and Suzuki Y 2008 Nat. Phys. 4 37
[50] Zhu W, Zhang Z, Zhang J and Liu Y 2015 SPIN 05 1550003
[51] Covington M 2005 Science 307 215
[52] Lee K J, Deac A, Redon O, Nozieres J P and Dieny B 2004 Nat. Mater. 3 877
[53] Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B and Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436
[54] Wei Jin, Yaowen Liu and Chen H 2006 IEEE. Trans. Magn. 42 2682
[55] Chen H H, Zhang Z, Chang C R and Liu Y 2017 J. Appl. Phys. 121 013902
[56] Chen H H, Zhang Z, Liu Y and Chang C R 2015 IEEE. Trans. Magn. 51 1401104
[57] Seki T, Mitani S, Yakushiji K and Takanashi K 2006 Appl. Phys. Lett. 89 172504
[58] Lee O J, Pribiag V S, Braganca P M, Gowtham P G, Ralph D C and Buhrman R A 2009 Appl. Phys. Lett. 95 012506
[59] Liu H, Bedau D, Backes D, Katine J A, Langer J and Kent A D 2010 Appl. Phys. Lett. 97 242510
[60] Rahman M T, Lyle A, Amiri P K, Harms J, Glass B, Zhao H, Rowlands G, Katine J A, Langer J, Krivorotov I N, Wang K L and Wang J P 2012 J. Appl. Phys. 111 07C907
[61] Rowlands G E, Rahman T, Katine J A, Langer J, Lyle A, Zhao H, Alzate J G, Kovalev A A, Tserkovnyak Y, Zeng Z M, Jiang H W, Galatsis K, Huai Y M, Amiri P K, Wang K L, Krivorotov I N and Wang J P 2011 Appl. Phys. Lett. 98 102509
[62] Zhang H, Hou Z, Zhang J, Zhang Z and Liu Y 2012 Appl. Phys. Lett. 100 142409
[63] Slonczewski J C 2002 J. Magn. Magn. Mater. 247 324
[64] Chen H H, Zeng L, Zhao W and Liu Y 2018 SPIN 08 1850013
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[3] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[4] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[5] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[6] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[7] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[8] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[9] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[10] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[11] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[12] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[13] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华). Chin. Phys. B, 2015, 24(9): 097503.
[14] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国). Chin. Phys. B, 2015, 24(9): 097506.
[15] Investigation of L10 FePt-based soft/hard composite bit-patterned media by micromagnetic simulation
Wang Ying (王颖), Wei Dan (韦丹), Cao Jiang-Wei (曹江伟), Wei Fu-Lin (魏福林). Chin. Phys. B, 2015, 24(6): 068504.
No Suggested Reading articles found!