Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037502    DOI: 10.1088/1674-1056/28/3/037502
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Micromagnetic simulations of reversal magnetization in cerium-containing magnets

Lei Li(李磊)1, Shengzhi Dong(董生智)1, Hongsheng Chen(陈红升)1, Ruijiao Jiang(姜瑞姣)1, Dong Li(李栋)1, Rui Han(韩瑞)1, Dong Zhou(周栋)1, Minggang Zhu(朱明刚)1,2, Wei Li(李卫)1,2, Wei Sun(孙威)2
1 Division of Functional Materials Research, Central Iron and Steel Research Institute, Beijing 100081, China;
2 National Engineering Research Center for Magnetic Materials, Beijing 102600, China
Abstract  

Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework (OOMMF). As for single (Nd,Ce)2Fe14B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared:single (Nd,Ce)2Fe14B type, core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type with 2 nm thick shell, core (Ce2Fe14B)-shell (Nd2Fe14B) type, and core (Nd2Fe14B)-shell (Ce2Fe14B) type. It is found that core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore, the relationship between the coercivity and the shell thickness t in core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t=5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.

Keywords:  micromagnetic simulation      cerium-containing magnets      core-shell structure      coercivity  
Received:  10 October 2018      Revised:  09 January 2019      Accepted manuscript online: 
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.50.Ww (Permanent magnets)  
  75.78.-n (Magnetization dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51590882 and 51871063).

Corresponding Authors:  Shengzhi Dong     E-mail:  dong_shengzhi@163.com

Cite this article: 

Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威) Micromagnetic simulations of reversal magnetization in cerium-containing magnets 2019 Chin. Phys. B 28 037502

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Hono K and Sepehri-Amin H 2012 Scr. Mater. 67 530
[4] Minowa T 2008 Resour. Geol. 58 414
[5] Herbst J F, Meyer M S and Pinkerton F E 2012 J. Appl. Phys. 111 07A718
[6] Li Z, Liu W Q, Zha S S, Li Y Q, Wang Y Q, Zhang D T, Yue M and Zhang J X 2015 J. Rare Earths 33 961
[7] Pathak A K, Khan M, Gschneidner Jr. K A, McCallum R W, Zhou L, Sun K W, Dennis K W, Zhou C, Pinkerton F E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
[8] Niu E, Chen Z A, Chen G A, Zhao Y G, Zhang J, Rao X L, Hu B P and Wang Z X 2014 J. Appl. Phys. 115 113912
[9] Xing M Y, Han J Z, Lin Z, Wan F M, Li C, Liu S Q, Wang C S, Yang J B and Yang Y C 2013 J. Magn. Magn. Mater. 331 140
[10] Boltich E B, Oswald E, Huang M Q, Hirosawa S, Wallace W E and Burzo E 1985 J. Appl. Phys. 57 4106
[11] Zhou S X, Wang Y G and Hoier R 1994 J. Appl. Phys. 75 6268
[12] Okada M, Sugimoto S, Ishizaka C, Tanaka T and Homma M 1985 J. Appl. Phys. 57 4146
[13] Li D and Bogatin Y 1991 J. Appl. Phys. 69 5515
[14] Yan C J, Guo S, Chen R J, Lee D and Yan A R 2014 IEEE Trans. Magn. 50 2102605
[15] Zhu M G, Li W, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B and Liu T 2014 IEEE Trans. Magn. 50 1000104
[16] Huang S L, Feng H B, Zhu M G, Li A H, Li Y F, Sun Y C, Zhang Y and Li W 2015 Int. J. Miner. Metall. Mater. 22 417
[17] Huang S L, Feng H B, Zhu M G, Li A H, Zhang Y and Li W 2014 AIP Adv. 4 107127
[18] Li W, Li A H, Feng H B, Huang S L, Wang J D and Zhu M G 2015 IEEE Trans. Magn. 51 2103603
[19] Zhu M G, Han R, Li W, Huang S L, Zheng D W, Song L W and Shi X N 2015 IEEE Trans. Magn. 51 2104604
[20] Rong C B and Shen B G 2018 Chin. Phys. B 27 117502
[21] Shang R X, Xiong J F, Liu D, Zuo S L, Zhao X, Li R, Zuo W L, Zhao T Y, Chen R J, Sun J R and Shen B G 2017 Chin. Phys. B 26 057502
[22] Liu D, Zhao T Y, Li R, Zhang M, Shang R X, Xiong J F, Zhang J, Sun J R and Shen B G 2017 AIP Adv. 7 056201
[23] Li R, Liu Y, Zuo S L, Zhao T Y, Hu F X, Sun J R and Shen B G 2018 Chin. Phys. B 27 047501
[24] Donahue M J and Porter D G http://math.nist.gov/oommf [2018-10-10]
[25] Donahue M J and Porter D G 1999 OOMMF User's Guide Version 1.0 (Gaithersburg: National Institute of Standards and Technology) p. 198
[26] Sagawa M, Fujimura S, Yamamoto H, Matsuura T and Hirosawa S 1985 J. Appl. Phys. 57 4094
[27] Herbst J F 1991 Rev. Mod. Phys. 63 819
[28] Sang C X, Zhao G P, Xia W X, Wan X L, Morvan F J, Zhang X C, Xie L H, Zhang J, Du J, Yan A R and Liu P 2016 Chin. Phys. B 25 037501
[29] Peng Y, Zhao G P, Wu S Q, Si W J and Wan X L 2014 Acta Phys. Sin. 63 167505 (in Chinese)
[30] Zhang X C, Zhao G P, Xia J, Yue M, Yuan X H and Xie L H 2014 Chin. Phys. B 23 097504
[31] Xia J, Zhang X C and Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese)
[32] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[4] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[5] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[6] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[7] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[8] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[9] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[10] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[11] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[12] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[13] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[14] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[15] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
No Suggested Reading articles found!