Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Micromagnetic simulations of reversal magnetization in cerium-containing magnets |
Lei Li(李磊)1, Shengzhi Dong(董生智)1, Hongsheng Chen(陈红升)1, Ruijiao Jiang(姜瑞姣)1, Dong Li(李栋)1, Rui Han(韩瑞)1, Dong Zhou(周栋)1, Minggang Zhu(朱明刚)1,2, Wei Li(李卫)1,2, Wei Sun(孙威)2 |
1 Division of Functional Materials Research, Central Iron and Steel Research Institute, Beijing 100081, China;
2 National Engineering Research Center for Magnetic Materials, Beijing 102600, China |
|
|
Abstract Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework (OOMMF). As for single (Nd,Ce)2Fe14B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared:single (Nd,Ce)2Fe14B type, core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type with 2 nm thick shell, core (Ce2Fe14B)-shell (Nd2Fe14B) type, and core (Nd2Fe14B)-shell (Ce2Fe14B) type. It is found that core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore, the relationship between the coercivity and the shell thickness t in core ((Nd,Ce)2Fe14B)-shell (Nd2Fe14B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t=5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.
|
Received: 10 October 2018
Revised: 09 January 2019
Accepted manuscript online:
|
PACS:
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
75.50.Ww
|
(Permanent magnets)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51590882 and 51871063). |
Corresponding Authors:
Shengzhi Dong
E-mail: dong_shengzhi@163.com
|
Cite this article:
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威) Micromagnetic simulations of reversal magnetization in cerium-containing magnets 2019 Chin. Phys. B 28 037502
|
[1] |
Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
|
[2] |
Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
|
[3] |
Hono K and Sepehri-Amin H 2012 Scr. Mater. 67 530
|
[4] |
Minowa T 2008 Resour. Geol. 58 414
|
[5] |
Herbst J F, Meyer M S and Pinkerton F E 2012 J. Appl. Phys. 111 07A718
|
[6] |
Li Z, Liu W Q, Zha S S, Li Y Q, Wang Y Q, Zhang D T, Yue M and Zhang J X 2015 J. Rare Earths 33 961
|
[7] |
Pathak A K, Khan M, Gschneidner Jr. K A, McCallum R W, Zhou L, Sun K W, Dennis K W, Zhou C, Pinkerton F E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
|
[8] |
Niu E, Chen Z A, Chen G A, Zhao Y G, Zhang J, Rao X L, Hu B P and Wang Z X 2014 J. Appl. Phys. 115 113912
|
[9] |
Xing M Y, Han J Z, Lin Z, Wan F M, Li C, Liu S Q, Wang C S, Yang J B and Yang Y C 2013 J. Magn. Magn. Mater. 331 140
|
[10] |
Boltich E B, Oswald E, Huang M Q, Hirosawa S, Wallace W E and Burzo E 1985 J. Appl. Phys. 57 4106
|
[11] |
Zhou S X, Wang Y G and Hoier R 1994 J. Appl. Phys. 75 6268
|
[12] |
Okada M, Sugimoto S, Ishizaka C, Tanaka T and Homma M 1985 J. Appl. Phys. 57 4146
|
[13] |
Li D and Bogatin Y 1991 J. Appl. Phys. 69 5515
|
[14] |
Yan C J, Guo S, Chen R J, Lee D and Yan A R 2014 IEEE Trans. Magn. 50 2102605
|
[15] |
Zhu M G, Li W, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B and Liu T 2014 IEEE Trans. Magn. 50 1000104
|
[16] |
Huang S L, Feng H B, Zhu M G, Li A H, Li Y F, Sun Y C, Zhang Y and Li W 2015 Int. J. Miner. Metall. Mater. 22 417
|
[17] |
Huang S L, Feng H B, Zhu M G, Li A H, Zhang Y and Li W 2014 AIP Adv. 4 107127
|
[18] |
Li W, Li A H, Feng H B, Huang S L, Wang J D and Zhu M G 2015 IEEE Trans. Magn. 51 2103603
|
[19] |
Zhu M G, Han R, Li W, Huang S L, Zheng D W, Song L W and Shi X N 2015 IEEE Trans. Magn. 51 2104604
|
[20] |
Rong C B and Shen B G 2018 Chin. Phys. B 27 117502
|
[21] |
Shang R X, Xiong J F, Liu D, Zuo S L, Zhao X, Li R, Zuo W L, Zhao T Y, Chen R J, Sun J R and Shen B G 2017 Chin. Phys. B 26 057502
|
[22] |
Liu D, Zhao T Y, Li R, Zhang M, Shang R X, Xiong J F, Zhang J, Sun J R and Shen B G 2017 AIP Adv. 7 056201
|
[23] |
Li R, Liu Y, Zuo S L, Zhao T Y, Hu F X, Sun J R and Shen B G 2018 Chin. Phys. B 27 047501
|
[24] |
Donahue M J and Porter D G http://math.nist.gov/oommf [2018-10-10]
|
[25] |
Donahue M J and Porter D G 1999 OOMMF User's Guide Version 1.0 (Gaithersburg: National Institute of Standards and Technology) p. 198
|
[26] |
Sagawa M, Fujimura S, Yamamoto H, Matsuura T and Hirosawa S 1985 J. Appl. Phys. 57 4094
|
[27] |
Herbst J F 1991 Rev. Mod. Phys. 63 819
|
[28] |
Sang C X, Zhao G P, Xia W X, Wan X L, Morvan F J, Zhang X C, Xie L H, Zhang J, Du J, Yan A R and Liu P 2016 Chin. Phys. B 25 037501
|
[29] |
Peng Y, Zhao G P, Wu S Q, Si W J and Wan X L 2014 Acta Phys. Sin. 63 167505 (in Chinese)
|
[30] |
Zhang X C, Zhao G P, Xia J, Yue M, Yuan X H and Xie L H 2014 Chin. Phys. B 23 097504
|
[31] |
Xia J, Zhang X C and Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese)
|
[32] |
Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|