Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010701    DOI: 10.1088/1674-1056/28/1/010701
GENERAL Prev   Next  

Simulation of SiC radiation detector degradation

Hai-Li Huang(黄海栗)1,2, Xiao-Yan Tang(汤晓燕)1,2, Hui Guo(郭辉)1,2, Yi-Men Zhang(张义门)1,2, Yu-Tian Wang(王雨田)1,2, Yu-Ming Zhang(张玉明)1,2
1 School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  

Simulation on the degradation of 4H-SiC Schottky detector was carried out using ISE TCAD, and the limit of the drift-diffusion analytical model was discussed. Two independent defect levels, rather than a pair of specific carrier lifetime, were induced to describe Z1/2 defects in simulation to calculate the charge collection efficiency versus bias voltage. Comparison between our calculation and the reported experimental results shows that an acceptable agreement was achieved, proving the feasibility of regarding Z1/2 defect as two individual defect levels. Such a treatment can simplify the simulation and may help to further investigate the detector degradation.

Keywords:  4H-SiC      detector degradation      simulation      Z1/2 defect  
Received:  20 September 2018      Revised:  30 October 2018      Accepted manuscript online: 
PACS:  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
  29.85.Fj (Data analysis)  
  29.40.-n (Radiation detectors)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB0400400).

Corresponding Authors:  Xiao-Yan Tang     E-mail:  xytang@mail.xidian.edu.cn

Cite this article: 

Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明) Simulation of SiC radiation detector degradation 2019 Chin. Phys. B 28 010701

[1] Hazdra P, ZaiHlava V and Vobecka J 2013 Solid State Phenom. 205-206 451
[2] Quinn T, Bates R, Bruzzi M, Cunningham W, Mathieson K, Moll M, Nelson T, Nilsson H E, Pintillie I, Reynolds L, Sciortino S, Sellin P, Strachan H, Svensson B G, Vaitkus J and Rahman M 2004 IEEE Nucl. Sci. Symp. Conf. Rec., 19-25 October 2003 OR Portland, p. 1028
[3] Nava F, Bertuccio G, Cavallini A and Vittone E 2008 Meas. Sci. Technol. 19 102001
[4] Sciortino S, Hartjes F, Lagomarsino S, Nava F, Brianzi M, Cindro V, Lanzierif C, Mollg M and Vanni P 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 552 138
[5] Storasta L, Bergman J P, Janzen E, Henry A and Lu J 2004 J. Appl. Phys. 96 4909
[6] Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O'Loughlin M J 2006 Appl. Phys. Lett. 88 052110
[7] Klein P B 2008 J. Appl. Phys. 103 033702
[8] Nigam S 2008 Carrier Lifetimes in Silicon Carbide (Ph. D. dissertation) (Pittsburgh: Carnegie Mellon University)
[9] Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi P G, Lanzieri C and Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645
[10] Jaksic M, Bosnjak Z, Gracin D, Medunic Z, Pastuovic Z, Vittone E and Nava F 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 188 130
[11] Vittone E, Fizzotti F, Giudice A L, Paolini C and Manfredotti C 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 161-163 446
[12] Neamen and Donald A 2011 Semiconductor Physics and Devices: Basic Principles (3th Edn.) (Beijing: Publishing House of Electronic Industry) p. 156 (in Chinese)
[13] Castaldini A, Cavallini A, Rigutti L, Nava F, Ferrero S and Giorgis F 2005 J. Appl. Phys. 98 053706
[14] Choo S C 1970 Phys. Rev. B 1 687
[15] Synopsys Inc 2013 Sentaurus Device User Guide Ver. H-2013.03
[16] Klein P B 2009 Phys. Status Solidi 206 2257
[17] Schenk A and Krumbein U 1995 J. Appl. Phys. 78 3185
[18] Castaldini A, Cavallini A, Nava F, Fuochi P G and Vanni P 2003 Mater. Sci. Forum 433-436 439
[19] Castaldini A, Cavallini A and Rigutti L 2006 Semicond. Sci. Technol. 21 724
[20] Eberlein T A G, Jones R and Briddon P R 2003 Phys. Rev. Lett. 90 225502
[21] Fageeha O, Howard J and Block R C 1994 J. Appl. 75 2317
[22] Guo H Y, Ge C C, Xia M, Guo L P, Chen J H and Yan Z Q 2015 Chin. Phys. B 24 037803
[23] Janzen E, Gali A, Carlsson P, Gallstrom A, Magnusson B and Son N T 2009 Mater. Sci. Forum 615-617 347
[24] Jia R X, Zhang Y M and Zhang Y M 2010 Chin. Phys. B 19 107105
[25] Kang S M, Ha J H, Park S H, Kim H S, Chun S D and Kim Y K 2007 Nucl. Instrum. Methods Phys. Res. 579 145
[26] Moscatelli F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 583 157
[27] Murat M, Akkerman A and Barak J 2009 IEEE Trans. Nucl. Sci. 55 3046
[28] Omotoso E, Meyer W E, Rensburg P J J V, Igumbor E, Tunhuma S M, Ngoepe P N M, Danga H T and Auretet F D 2017 Nucl. Instrum. Methods Phys. Res. B 409 241
[29] Raja P V and Murty N V L N 2018 ⅡEEE Trans. Nucl. Sci. 65 558
[30] Strokan N B, Ivanov A M and Lebedev A A 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 569 758
[21] Vittone E, Pastuovic Z, Breese M B H, Garcia Lopez J, Jaksic M, Raisanen J, Siegele R, Simon A and Vizkelethy G 2016 Nucl. Instrum. Methods Phys. Res. Sect. B 372 128
[32] Zh X and Hu X 2018 Chin. Phys. B 27 087304
[33] Han Y, Li B S, Wang Z G, et al. 2017 Chin. Phys. Lett. 34 012801
[34] Zhang L, Zhang Y M, Zhang Y M, Han Ch and Ma Y J 2009 Chin. Phys. B 18 1931
[35] Zippelius B, Glas A, Weber H B, Pensl G, Kimoto T and Krieger M 2012 Mater. Sci. Forum 717-720 251
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!