|
|
Simulation of SiC radiation detector degradation |
Hai-Li Huang(黄海栗)1,2, Xiao-Yan Tang(汤晓燕)1,2, Hui Guo(郭辉)1,2, Yi-Men Zhang(张义门)1,2, Yu-Tian Wang(王雨田)1,2, Yu-Ming Zhang(张玉明)1,2 |
1 School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China |
|
|
Abstract Simulation on the degradation of 4H-SiC Schottky detector was carried out using ISE TCAD, and the limit of the drift-diffusion analytical model was discussed. Two independent defect levels, rather than a pair of specific carrier lifetime, were induced to describe Z1/2 defects in simulation to calculate the charge collection efficiency versus bias voltage. Comparison between our calculation and the reported experimental results shows that an acceptable agreement was achieved, proving the feasibility of regarding Z1/2 defect as two individual defect levels. Such a treatment can simplify the simulation and may help to further investigate the detector degradation.
|
Received: 20 September 2018
Revised: 30 October 2018
Accepted manuscript online:
|
PACS:
|
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
29.85.Fj
|
(Data analysis)
|
|
29.40.-n
|
(Radiation detectors)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0400400). |
Corresponding Authors:
Xiao-Yan Tang
E-mail: xytang@mail.xidian.edu.cn
|
Cite this article:
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明) Simulation of SiC radiation detector degradation 2019 Chin. Phys. B 28 010701
|
[1] |
Hazdra P, ZaiHlava V and Vobecka J 2013 Solid State Phenom. 205-206 451
|
[2] |
Quinn T, Bates R, Bruzzi M, Cunningham W, Mathieson K, Moll M, Nelson T, Nilsson H E, Pintillie I, Reynolds L, Sciortino S, Sellin P, Strachan H, Svensson B G, Vaitkus J and Rahman M 2004 IEEE Nucl. Sci. Symp. Conf. Rec., 19-25 October 2003 OR Portland, p. 1028
|
[3] |
Nava F, Bertuccio G, Cavallini A and Vittone E 2008 Meas. Sci. Technol. 19 102001
|
[4] |
Sciortino S, Hartjes F, Lagomarsino S, Nava F, Brianzi M, Cindro V, Lanzierif C, Mollg M and Vanni P 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 552 138
|
[5] |
Storasta L, Bergman J P, Janzen E, Henry A and Lu J 2004 J. Appl. Phys. 96 4909
|
[6] |
Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O'Loughlin M J 2006 Appl. Phys. Lett. 88 052110
|
[7] |
Klein P B 2008 J. Appl. Phys. 103 033702
|
[8] |
Nigam S 2008 Carrier Lifetimes in Silicon Carbide (Ph. D. dissertation) (Pittsburgh: Carnegie Mellon University)
|
[9] |
Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi P G, Lanzieri C and Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645
|
[10] |
Jaksic M, Bosnjak Z, Gracin D, Medunic Z, Pastuovic Z, Vittone E and Nava F 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 188 130
|
[11] |
Vittone E, Fizzotti F, Giudice A L, Paolini C and Manfredotti C 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 161-163 446
|
[12] |
Neamen and Donald A 2011 Semiconductor Physics and Devices: Basic Principles (3th Edn.) (Beijing: Publishing House of Electronic Industry) p. 156 (in Chinese)
|
[13] |
Castaldini A, Cavallini A, Rigutti L, Nava F, Ferrero S and Giorgis F 2005 J. Appl. Phys. 98 053706
|
[14] |
Choo S C 1970 Phys. Rev. B 1 687
|
[15] |
Synopsys Inc 2013 Sentaurus Device User Guide Ver. H-2013.03
|
[16] |
Klein P B 2009 Phys. Status Solidi 206 2257
|
[17] |
Schenk A and Krumbein U 1995 J. Appl. Phys. 78 3185
|
[18] |
Castaldini A, Cavallini A, Nava F, Fuochi P G and Vanni P 2003 Mater. Sci. Forum 433-436 439
|
[19] |
Castaldini A, Cavallini A and Rigutti L 2006 Semicond. Sci. Technol. 21 724
|
[20] |
Eberlein T A G, Jones R and Briddon P R 2003 Phys. Rev. Lett. 90 225502
|
[21] |
Fageeha O, Howard J and Block R C 1994 J. Appl. 75 2317
|
[22] |
Guo H Y, Ge C C, Xia M, Guo L P, Chen J H and Yan Z Q 2015 Chin. Phys. B 24 037803
|
[23] |
Janzen E, Gali A, Carlsson P, Gallstrom A, Magnusson B and Son N T 2009 Mater. Sci. Forum 615-617 347
|
[24] |
Jia R X, Zhang Y M and Zhang Y M 2010 Chin. Phys. B 19 107105
|
[25] |
Kang S M, Ha J H, Park S H, Kim H S, Chun S D and Kim Y K 2007 Nucl. Instrum. Methods Phys. Res. 579 145
|
[26] |
Moscatelli F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 583 157
|
[27] |
Murat M, Akkerman A and Barak J 2009 IEEE Trans. Nucl. Sci. 55 3046
|
[28] |
Omotoso E, Meyer W E, Rensburg P J J V, Igumbor E, Tunhuma S M, Ngoepe P N M, Danga H T and Auretet F D 2017 Nucl. Instrum. Methods Phys. Res. B 409 241
|
[29] |
Raja P V and Murty N V L N 2018 ⅡEEE Trans. Nucl. Sci. 65 558
|
[30] |
Strokan N B, Ivanov A M and Lebedev A A 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 569 758
|
[21] |
Vittone E, Pastuovic Z, Breese M B H, Garcia Lopez J, Jaksic M, Raisanen J, Siegele R, Simon A and Vizkelethy G 2016 Nucl. Instrum. Methods Phys. Res. Sect. B 372 128
|
[32] |
Zh X and Hu X 2018 Chin. Phys. B 27 087304
|
[33] |
Han Y, Li B S, Wang Z G, et al. 2017 Chin. Phys. Lett. 34 012801
|
[34] |
Zhang L, Zhang Y M, Zhang Y M, Han Ch and Ma Y J 2009 Chin. Phys. B 18 1931
|
[35] |
Zippelius B, Glas A, Weber H B, Pensl G, Kimoto T and Krieger M 2012 Mater. Sci. Forum 717-720 251
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|