Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 124205    DOI: 10.1088/1674-1056/21/12/124205

Infrared emissivities of Mn, Co co-doped ZnO powders

Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜)
School of Technical Physics, Xidian University, Xi'an 710071, China
Abstract  Infrared emissivities of Zn0.99-xMn0.01CoxO (x=0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption spectra, and infrared emissivities are studied by XRD, SEM, UV spectrophotometer, and IR-2 Dual-Band Infrared Emissometer in a range of 8 μm-14 μm. Doped ZnO is still of wurtzite structure, and no peaks of other phases originating from impurities are detected. The optical band-gap decreases as the Co content and calcination temperature ascend, and of which the smallest optical band-gap is 2.19 eV. The lowest infrared emissivity, 0.754, is observed in Zn0.98Mn0.01Co0.01O with the increase in Co concentration. The infrared emissivity experiences fluctuations with calcination temperature going up, and its minimum value is 0.762 at 1100℃.
Keywords:  co-doped ZnO      optical band-gap      infrared emissivity      solid-state reaction  
Received:  25 February 2012      Revised:  31 May 2012      Accepted manuscript online: 
PACS:  42.79.Wc (Optical coatings)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  71.55.Gs (II-VI semiconductors)  
Corresponding Authors:  Yao Yin-Hua     E-mail:

Cite this article: 

Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜) Infrared emissivities of Mn, Co co-doped ZnO powders 2012 Chin. Phys. B 21 124205

[1] Chao Y P, Tang W, Weng X L and Deng L J 2011 Mater. Sci. Forum 687 771
[2] Biswas P, De A, Pramanik N, Chakraborty P, Ortner K, Hock V and Korder S 2003 Mater. Lett. 57 2326
[3] Zhu D M, Li K, Luo F and Zhou W C 2009 Appl. Surf. Sci. 255 6145
[4] Wu X W, Feng Y J and Liu Y K 2010 J. Harbin Inst. Technol. (New Series) 17 588
[5] Wang W W, Diao X G, Wang Z, Wang T M 2005 Journal of Beijing University of Aeronautics and Astronautics 31 236 (in Chinese)
[6] Chowdhury R, Adhikari S and Rees P 2010 Physica B: Condens. Matter 405 1
[7] Lin M N, Hsu H S, Lai J Y, Guo M C, Lin C Y, Li G Y, Chen F Y, Huang J J, Chen S F, Liu C P and Huang J C A 2011 Appl. Phys. Lett. 98 212509
[8] Pearton S J, Norton D P, Ivill M P, Hebard A F, Zavada J M, Chen W M and Buyanova I A 2007 J. Electron. Mater. 36 462
[9] Cong C J, Hong J H and Zhang K L 2009 Mater. Chem. Phys. 113 438
[10] Wang L W, Xu Z, Zhang F J, Zhao S L and Lu L F 2010 Int. J. Miner. Metall. Mater. 17 476
[11] Maensiri S, Laokul P, Klinkaewnarong J and Thomas C 2009 Appl. Phys. A 94 602
[12] Jackson J D 1999 Classical Electrodynamics 3rd edn. (New York: Wiley) pp. 310-312
[13] Zhou Y 2004 Ceramic Materials 2nd edn. (Beijing: Science Press) p. 12 (in Chinese)
[14] Doria J, Mera J, Córdoba C, Paredes O, Gomez A, Paucar C and Moran O 2011 Revista Colombiana de Física 43 824
[15] Maiti U N, Ghosh P K, Nandy S and Chattopadhyay K K 2007 Physica B: Condens. Matter 387 104
[16] Abrishami M E, Hosseini S M and Kompany A 2011 J. Appl. Sci. 11 1411
[17] Sun B, Zhao C Y, Xu P S, Zhang G B and Wei S Q 2007 J. Inorg. Mater. 22 912
[18] Yu Y S, Kim G Y, Min B H and Kim S C 2004 J. Eur. Ceram. Soc. 24 1866
[19] Peng L P, Fang L and Wu W D 2012 Chin. Phys. B 21 047305
[20] Sarsari I A, Salamati H, Kameli P and Razavi F S 2011 J. Supercond. Nov. Magn. 24 2294
[21] Ramachandran S, Tiwari A and Narayan J 2004 J. Electron. Mater. 33 1301
[22] Ullah R and Dutta J 2008 J. Hazard. Mater. 156 196
[23] Polyakov A Y, Smirnov N B, Govorkov A V, Kozhukhova E A, Heo Y W, Ivill M P, Ip K, Norton D P, Pearton S J, Kelly J, Rairigh R, Hebard A F and Steiner T 2005 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structure 23 276
[24] Ozerov I, Chabre F and Marin W 2005 Mater. Sci. Eng. C 25 615
[25] Han W, Wang J W and Meng M 2005 Insulators and Surge Arresters 1 33 (in Chinese)
[26] Wagner C D, Riggs W M, Davis L E, Moulder J F and Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Perking-Elmer Corporation, Physical Electronics Division) p. 74
[1] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[2] Formation of ZnGa2O4 films by multilayer deposition and subsequent thermal annealing
Yan Jin-Liang (闫金良), Zhao Yin-Nü (赵银女), Li Chao (李超). Chin. Phys. B, 2014, 23(4): 048105.
[3] A thin radar-infrared stealth-compatible structure:Design, fabrication, and characterization
Tian Hao (田浩), Liu Hai-Tao (刘海韬), Cheng Hai-Feng (程海峰). Chin. Phys. B, 2014, 23(2): 025201.
[4] Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO
Weng Zhen-Zhen(翁臻臻), Zhang Jian-Min(张健敏), Huang Zhi-Gao(黄志高), and Lin Wen-Xiong(林文雄) . Chin. Phys. B, 2011, 20(2): 027103.
[5] Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang (徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(5): 056101.
[6] Comparative studies on Zn0.95Co0.05O thin films on C- and R-sapphire substrates
Peng Ying-Zi(彭英姿),Thomas Liew,Song Wen-Dong, and Chong Tow Chong . Chin. Phys. B, 2009, 18(12): 5501-5506.
[7] Effect of fabrication conditions on the properties of indium tin oxide powders
Xie Wei(谢卫) . Chin. Phys. B, 2008, 17(7): 2683-2688.
No Suggested Reading articles found!