Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127101    DOI: 10.1088/1674-1056/27/12/127101
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

Theoretical design of multifunctional half-Heusler materials based on first-principles calculations

Xiuwen Zhang(张秀文)
Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
Abstract  

The family of ABX half-Heusler materials, also called filled-tetrahedral structures, is a special class of ternary compounds hosting a variety of material functionalities including thermoelectricity, topological insulation, magnetism, transparent conductivity and superconductivity. This class of compounds can be derived from two substitution approaches, i.e., from Heusler materials by removing a portion of atoms forming ordered vacancies thus becoming half-Heusler, or from tetrahedral zinc blende compounds by adding atoms on the interstitial sites thus become filled-tetrahedral structures. In this paper, we briefly review the substitution approaches for material design along with their application in the design of half-Heusler compounds; then we will review the high-throughput search of new half-Heusler filled-tetrahedral structures and the study of their physical properties and functionalities.

Keywords:  density functional theory      high-throughput materials prediction      half-Heusler      transparent conductor  
Received:  16 May 2018      Revised:  14 September 2018      Accepted manuscript online: 
PACS:  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Lp (Intermetallic compounds)  
  71.20.Ps (Other inorganic compounds)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11774239), the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the Fund from Shenzhen Science and Technology Innovation Commission (Grant Nos. JCYJ20170412110137562, JCYJ20170818093035338, and ZDSYS201707271554071), the Natural Science Foundation of Shenzhen University (Grant No. 827-000242), the High-End Researcher Startup Funds of Shenzhen University (Grant No. 848-0000040251), and the Supporting Funds from Guangdong Province for 1000 Talents Plan (Grant No. 85639-000005).

Corresponding Authors:  Xiuwen Zhang     E-mail:  zhxw99@gmail.com

Cite this article: 

Xiuwen Zhang(张秀文) Theoretical design of multifunctional half-Heusler materials based on first-principles calculations 2018 Chin. Phys. B 27 127101

[1] Goldschmidt V M 1926 Skrifter Norske Videnskaps-Akad 8 529
[2] Parthé E 1964 Crystal chemistry of tetrahedral structures (New York: Gordon and Breach)
[3] Sze S M 1969 Physics of Semiconductor Devices (New York: Wiley-Interscience)
[4] Berger L I 1997 Semiconductor Materials (Boca Raton: CRC Press)
[5] Xia J B 2000 Morden semiconductor physics (Beijing: Peking University Press) (in Chinese)
[6] Campbell S A 2007 Fabrication Engineering at the Micro and Nanoscale (New York: Oxford University Press)
[7] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer-US)
[8] Yu P Y, Cardona M 2010 Fundamentals Semiconductor: Physics, Materials and Properties, 4th edn. (Heidelberg: Springer)
[9] Goodman C H L 1958 J. Phys. Chem. Solids 6 305
[10] Pamplin B R 1960 Nature 188 136
[11] Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, et al. 2014 Chem. Mater. 26 3411
[12] Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, et al. 2014 Nat. Commun. 5 3974
[13] Ivanshin V A, Litvinova T O, Sukhanov A A, Sokolov D A and Aronson M C 2009 JETP Lett. 90 116
[14] Klimczuk T, Wang C H, Gofryk K, Ronning F, Winterlik J, Fecher G H, et al. 2012 Phys. Rev. B 85 174505
[15] Li C, Lian J S and Jiang Q 2011 Phys. Rev. B 83 235125
[16] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, et al. 2016 Sci. Rep. 6 38839
[17] Wood D M, Zunger A and de Groot R 1985 Phys. Rev. B 31 2570
[18] Hart G L W and Zunger A 2001 Phys. Rev. Lett. 87 275508
[19] Wei S H and Zunger A 1986 Phys. Rev. Lett. 56 528
[20] Carrete J, Li W, Mingo N, Wang S and Curtarolo S 2014 Phys. Rev. X 4 011019
[21] Kimura Y, Zama A and Mishima Y 2006 in 25th Int. Conf. Thermoelectr 2006 ICT 06, pp. 115-119
[22] Miyamoto K, Kimura A, Sakamoto K, Ye M, Cui Y, Shimada K, et al. 2008 Appl. Phys. Express 1 081901
[23] Sakurada S and Shutoh N 2005 Appl. Phys. Lett. 86 082105
[24] Xia Y, Bhattacharya S, Ponnambalam V, Pope A L, Poon S J and Tritt T M 2000 J. Appl. Phys. 88 1952
[25] Yang J, Li H M, Wu T, Zhang W Q, Chen L D and Yang J H 2008 Adv. Funct. Mater. 18 2880
[26] Chadov S, Qi X, Kübler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[27] Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, et al. 2010 Nat. Mater. 9 546
[28] Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, et al. 2010 Phys. Rev. B 82 125208
[29] Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, et al. 2010 Phys. Rev. Lett. 105 096404
[30] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[31] Casper F, Graf T, Chadov S, Balke B and Felser C 2012 Semicond. Sci. Technol. 27 063001
[32] Yan F, Zhang X, Yu Y, Yu L, Nagaraja A, Mason T O, et al. 2015 Nat. Commun. 6 7308
[33] Tafti F F, Fujii T, Juneau-Fecteau A, Rene de Cotret S, Doiron-Leyraud N, Asamitsu A, et al. 2013 Phys. Rev. B 87 184504
[34] Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, et al. 2011 Nat. Mater. 10 521
[35] Vermeer M J D, Zhang X, Trimarchi G, Donakowski M D, Chupas P J, Poeppelmeier K R, et al. 2015 J. Am. Chem. Soc. 137 11383
[36] Du Y, Wan B, Wang D, Sheng L, Duan C G and Wan X 2015 Sci. Rep. 5 14423
[37] Ali R, Murtaza G, Takagiwa Y, Khenata R, Uddin H, Ullah H and Khan S A 2014 Chin. Phys. Lett. 31 047102
[38] Labidi S, Lakel A, Labidi M and Bensalem R 2014 Chin. Phys. Lett. 31 046104
[39] Hayatullah, Murtaza G, Khenata R, Naeem S, Khalid M N and Mohammad S 2013 Chin. Phys. Lett. 30 097101
[40] Huang Y, Sun Q D, Xu W, He Y and Yin W J 2017 Acta Phys. Chim. Sin. 33 0001
[41] Sabir B, Noor N A, Rashid M, Din F U, Ramay S M and Mahmood A 2018 Chin. Phys. B 27 016101
[42] Huang H M, Zhang C K, He Z D, Zhang J, Yang J T and Luo S J 2018 Chin. Phys. B 27 017103
[43] Sohor M A H M, Mustapha M and Kurnia J C 2017 MATEC Web Conf. 131 04003
[44] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[45] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[46] Kuan T S, Kuech T F, Wang W I and Wjlkie E L 1985 Phys. Rev. Lett. 54 201
[47] Osorio R, Bernard J E, Froyen S and Zunger A 1992 Phys. Rev. B 45 11173
[48] Zunger A 1997 MRS Bull. 22 20
[49] Connolly J W D, Williams A R 1983 Phys. Rev. B 27 5169
[50] Laks D B, Ferreira L G, Froyen S and Zunger A 1992 Phys. Rev. B 46 12587
[51] Franceschetti A and Zunger A 1999 Nature 402 60
[52] d'Avezac M, Luo J W, Chanier T and Zunger A 2012 Phys. Rev. Lett. 108 027401
[53] Zhang X, Trimarchi G, d'Avezac M and Zunger A 2009 Phys. Rev. B 80 241202
[54] Mahlab E, Volterra V, Low W and Yariv A 1963 Phys. Rev. 131 920
[55] Gai Y, Li J, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
[56] Wei S H 2004 Comput. Mater. Sci. 30 337
[57] Palmer G B, Poeppelmeier K R and Mason T O 1997 Chem. Mater. 9 3121
[58] Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, et al. 2016 J. Am. Chem. Soc. 138 2961
[59] McClure E T, Ball M R, Windl W and Woodward P M 2016 Chem. Mater. 28 1348
[60] Xia Z, Ma C, Molokeev M S, Liu Q, Rickert K and Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494
[61] Xia Z and Poeppelmeier K R 2017 Acc. Chem. Res. 50 1222
[62] Cai Z H, Narang P, Atwater H A, Chen S, Duan C G, Zhu Z Q, et al. 2015 Chem. Mater. 27 7757
[63] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, et al. 2017 J. Am. Chem. Soc. 139 2630
[64] Zhang S B, Wei S H and Zunger A 1997 Phys. Rev. Lett. 78 4059
[65] Zhang S B, Wei S H, Zunger A and Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
[66] Bernard J E and Zunger A 1988 Phys. Rev. B 37 6835
[67] Okamoto T, Kojima N, Yamada A, Konagai M, Takahashi K, Nakamura Y, et al. 1992 Jpn. J. Appl. Phys. 31 L143
[68] Johnson V and Jeitschko W 1974 J. Solid State Chem. 11 161
[69] Luo H, Krizan J W, Muechler L, Haldolaarachchige N, Klimczuk T, Xie W, et al. 2015 Nat. Commun. 6 6489
[70] Casper F, Seshadri R and Felser C 2009 Phys. Status Solidi (a) 206 1090
[71] Juza and Hund F 1948 Z. Anorg. Allg. Chem. 257 1
[72] Nowotny H and Bachmayer K 1950 Monatsh. Chem. 81 488
[73] Wei S H and Zunger A 1987 Phys. Rev. B 35 3952
[74] Kushida K, Kaneko Y and Kuriyama K 2004 Phys. Rev. B 70 233303
[75] Trimarchi T and Zunger A 2007 Phys. Rev. B 75 104113
[76] Zhang X, Yu L, Zakutayev A and Zunger A 2012 Adv. Funct. Mater. 22 1425
[77] Schon J C and Jansen M 1996 Angew. Chem. Int. Ed. Engl. 35 1286
[78] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[79] Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, et al. 2014 J. Phys.: Condens. Matter 26 035402
[80] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[81] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[82] Hautier G, Fischer C C, Jain A, Mueller T and Ceder G 2010 Chem. Mater. 22 3762
[83] Meredig B, Agrawal A, Kirklin S, Saal J E, Doak J W, Thompson A, et al. 2014 Phys. Rev. B 89 094104
[84] Gautier R, Zhang X, Hu L, Yu L, Lin Y, Sunde T O L, et al. 2015 Nat. Chem. 7 308
[85] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[86] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[87] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[88] Zunger A, Perdew J P and Oliver G L 1980 Solid State Commun. 34 933
[89] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[90] Stevanovic V, Lany S, Zhang X and Zunger A 2012 Phys. Rev. B 85 115104
[91] Yu Y G, Zhang X and Zunger A 2017 Phys. Rev. B 95 085201
[92] Inorganic Crystal Structure Database, Fachinformationszentrum Karlsruhe, Germany 2006
[93] Trimarchi G, Zhang X, Vermeer M J D, Cantwell J and Poeppelmeier K R, Zunger A 2015 Phys. Rev. B 92 165103
[94] Zakutayev A, Zhang X, Nagaraja A, Yu L, Lany S, Mason T O, et al. 2013 J. Am. Chem. Soc. 135 10048
[95] Yu L and Zunger A 2012 Phys. Rev. Lett. 108 068701
[96] Hedin L 1965 Phys. Rev. A 139 796
[97] Ottaviani G, Canali C, Nava F and Mayer J W 1973 J. Appl. Phys. 44 2917
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors
Chen Zhou(周臣), Wang-Ping Cheng(程王平), Yuan-Di He(何媛娣), Cheng Shao(邵成), Ling Hu(胡令), Ren-Huai Wei(魏仁怀), Jing-Gang Qin(秦经刚), Wen-Hai Song(宋文海), Xue-Bin Zhu(朱雪斌), Chuan-Bing Cai(蔡传兵), and Yu-Ping Sun(孙玉平). Chin. Phys. B, 2022, 31(10): 107305.
No Suggested Reading articles found!