Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124701    DOI: 10.1088/1674-1056/27/12/124701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows

Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌)
Physics Department, Dalian University of Technology, Dalian 116024, China
Abstract  

In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow. The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed.

Keywords:  gas flow      inductively coupled plasma      compressible flow      fluid model  
Received:  07 June 2018      Revised:  03 October 2018      Accepted manuscript online: 
PACS:  47.10.ad (Navier-Stokes equations)  
  47.11.Fg (Finite element methods)  
  47.15.-x (Laminar flows)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
Fund: 

Project supported by the National Natural Science Foundations of China (Grant No. 11305023). The author is deeply indebted to the Dalian University of Technology for providing the authority of utilizing the COMSOL software.

Corresponding Authors:  Shu-Xia Zhao     E-mail:  zhaonie@dlut.edu.cn

Cite this article: 

Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌) Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows 2018 Chin. Phys. B 27 124701

[1] Jayapalan K K and Chin O H 2015 AIP Conf. Proc. 1657 150003
[2] Li H, Xiao C, Zhang E, Singh A K and Hirose A 2011 Radiat. Eff. Defects Solids 166 399
[3] Han D M, Liu Z G, Liu Y X, Zhang X P, Gao F, Peng W and Wang Y N 2016 J. Appl. Phys. 119 113302
[4] Agarwal A, Rauf S and Collins K 2012 Plasma Sources Sci. Technol. 21 055012
[5] Hebner G A 1996 J. Appl. Phys. 80 2624
[6] Kiehlbauch M W and Graves D B 2001 J. Appl. Phys. 89 2047
[7] Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan M and Sharma S P 2001 J. Appl. Phys. 90 2148
[8] Lee H C, Seo B H, Kwon D C, Kim J H, Seong D J, Oh S J, Chung C W, You K H and Shin C 2017 Appl. Phys. Lett. 110 014106
[9] Jayapalan K K and Chin O H 2014 Phys. Plasmas 21 043510
[10] Shimada M, Tynan G R and Cattolica R 2008 J. Appl. Phys. 103 033304
[11] Shimada M, Tynan G R and Cattolica R 2007 Plasma Sources Sci. Technol. 16 193
[12] O'Connell D, Gans T, Crintea D L, Czarnetzki U and Sadeghi N 2008 J. Phys. D: Appl. Phys. 41 035208
[13] Takahashi K, Chiba A, Komuro A and Ando A 2015 Phys. Rev. Lett. 114 195001
[14] Fruchtman A and Makrinich G 2005 Phys. Rev. Lett. 95 115002
[15] Kobayashi J, Nakazato N and Hiratsuka K 1989 J. Electrochem. Soc. 136 1781
[16] Park S K and Economou D J 1990 J. Electrochem. Soc. 137 2624
[17] Sekine M 2002 Pure Appl. Chem. 74 381
[18] Lymberopoulos D P and Economou D J 1995 IEEE Trans. Plasma Sci. 23 573
[19] Chinzei Y, Ichiki T, Ikegami N, Feurprier Y, Shindo H and Horiike Y 1998 J. Vac. Sci. Technol. B 16 1043
[20] Kim H J, Yang W and Joo J 2015 J. Appl. Phys. 118 043304
[21] Okhrimovskkyy A, Bogaerts A and Gijbels R 2004 J. Appl. Phys. 96 3070
[22] Tong L Z 2012 Cent. Eur. J. Phys. 10 888
[23] Xu X, Feng J, Liu X M, Wang Y N and Yan J 2013 Vacuum 92 1
[24] Doh H H and Horiike Y 2001 Jpn. J. Appl. Phys. 40 3416
[25] Tong L Z 2013 Jpn. J. Appl. Phys. 52 05EA03
[26] Tinck S, Tillocher T, Dussart R, Neyts E C and Bogaerts A 2016 J. Phys. D: Appl. Phys. 49 385201
[27] Kim H J and Lee H J 2016 Plasma Sources Sci. Technol. 25 035006
[28] Kiehlbauch M W and Graves D B 2003 J. Vac. Sci. Technol. A 21 116
[29] Ventzek Peter L G, Grapperhaus M and Kushner M J 1994 J. Vac. Sci. Technol. B 12 3118
[30] Panagopoulos T, Kim D, Midha V and Economou D J 2002 J. Appl. Phys. 91 2687
[31] Lymberopoulos D P and Economou D J 1995 J. Res. Natl. Inst. Stand. Technol. 100 473
[32] Li H, Liu Y, Zhang Y R, Gao F and Wang Y N 2017 J. Appl. Phys. 121 233302
[33] Lee H C and Chung C W 2012 Phys. Plasmas 19 033514
[34] Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 041503
[35] Chung C W and Chung H Y 2000 Phys. Plasmas 7 3826
[36] Brezmes A O and Breitkopf C 2015 Vacuum 116 65
[37] COMSOL 4.2 Userbook.
[38] Bird R B, Stewart W E and Lightfoot E N 2007 Transport phenomena, 2nd edn. (New York: John Wiley & Sons)
[39] Thompson P A 1998 Compressible Fluid Dynamics (New York: McGraw-Hill)
[40] Gao F, Zhao S X, Li X S and Wang Y N 2009 Phys. Plasmas 16 113502
[41] Keesee A M and Scime E E 2006 Rev. Sci. Instrum. 77 4091
[42] Zhao S X, Zhang Y R, Gao F, Wang Y N and Bogaerts A 2015 J. Appl. Phys. 117 243303
[43] Abada H, Chabert P, Booth J P, Robiche J and Cartry G 2002 J. Appl. Phys. 92 4223
[44] Mouchtouris S and Kokkoris G 2016 Plasma Sources Sci. Technol. 25 025007
[45] Zhang X, Yu P C, Liu Y, Zheng Z, Xu L, Wang P and Cao J X 2015 Phys. Plasmas 22 103509
[46] Zhang X, Cao J X, Liu Y, Wang Y P, Yu P C and Zhang Z K 2017 IEEE Trans. Plasma Sci. 45 338
[47] Zhang X, Zhang Z K, Cao J X, Liu Y and Yu P C 2018 AIP Adv. 8 035121
[48] Zhang Z K, Zhang X, Cao J X, Liu Y, Wang P and Yu P C 2018 IEEE Trans. Plasma Sci. 46 3151
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[3] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[4] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[5] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[6] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[7] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[8] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[9] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[10] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[11] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[12] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[13] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[14] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[15] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
No Suggested Reading articles found!