Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120303    DOI: 10.1088/1674-1056/27/12/120303
GENERAL Prev   Next  

Effects of imperfect pulses on dynamical decoupling using quantum trajectory method

Lin-Ze He(何林泽)1,2,3, Man-Chao Zhang(张满超)1,2,3, Chun-Wang Wu(吴春旺)1,2,3, Yi Xie(谢艺)1,2,3, Wei Wu(吴伟)1,2,3, Ping-Xing Chen(陈平形)1,2,3
1 Department of Physics, College of Science and Liberal Arts, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China;
3 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  

The dynamical decoupling (DD) method is widely adopted to preserve coherence in different quantum systems. In the case of ideal pulses, its effects on the suppression of noise can be analytically described by the mathematical form of filter function. However, in practical experiments, the unavoidable pulse errors limit the efficiency of DD. In this paper, we study the effects of imperfect pulses on DD efficiency based on quantum trajectories. By directly generating a pseudo noise sequence correlated in time, we can explore the performance of DD with different pulse errors in the typical noise environment. It shows that, for the typical 1/f noise environment, the phase error of operational pulses severely affects the performance of noise suppression, while the detuning and intensity errors have less influence. Also, we get the thresholds of these errors for efficient DD under the given experimental conditions. Our method can be widely applied to guide practical DD experimental implementation.

Keywords:  pulse imperfections      dynamical decoupling  
Received:  23 July 2018      Revised:  18 October 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  02.60.-x (Numerical approximation and analysis)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), the National Natural Science Foundation of China (Grant Nos. 11174370, 11304387, 61632021, 11305262, and 61205108), and the Research Plan Project of the National University of Defense Technology (Grant No. ZK16-03-04).

Corresponding Authors:  Ping-Xing Chen     E-mail:  pxchen@nudt.edu.cn

Cite this article: 

Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形) Effects of imperfect pulses on dynamical decoupling using quantum trajectory method 2018 Chin. Phys. B 27 120303

[1] Hahn E L 1950 Phys. Rev. 77 297
[2] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[3] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[4] Carr H Y and Purcell E M 1954 Phys. Rev. 94 630
[5] Meiboom S and Gill D 1958 Rev. Sci. Instrum. 29 688
[6] Gouml and Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[7] Wang Y, Um M, Zhang J H, An S M, Ming L, Zhang J N, Duan L M, Yum D and Kim K 2017 Nat. Photon. 11 646
[8] Biercuk M J, Uys H, Vandevender A P, Shiga N, Itano W M and Bollinger J J 2009 Nature 458 7241
[9] Wang D M, Qian Y, Xu J B and Yu Y H 2015 Chin. Phys. B 24 110304
[10] Du J F, Rong X, Zhao N, Wang Y, Yang J H and Liu R B 2009 China Basic Science 461 7268
[11] Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H J, Morton J J and Thewalt M L 2013 Science 342 6160
[12] Sagi Y, Almog I and Davidson N 2010 Phys. Rev. Lett. 105 053201
[13] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2009 Nat. Phys. 5 903
[14] Barthel C, Medford J, Marcus C M, Hanson M P and Gossard A C 2010 Phys. Rev. Lett. 105 266808
[15] De L G, Wang Z H, Risté D, Dobrovitski V V and Hanson R 2010 Science 603 330
[16] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys. 7 565
[17] Khodjasteh K and Lidar D A 2006 Phys. Rev. A 75 1004
[18] Alvarez G A, Ajoy A, Peng X H and Suter D 2010 Phys. Rev. A 82 042306
[19] Wang Z H, Zhang W X, Tyryshkin A M, Lyon S A, Ager J W, Haller E E and Dobrovitski V V 2012 Phys. Rev. B 85 283
[20] Uhrig G S and Pasini S 2010 New J. Phys. 12 311
[21] Tyryshkin A M, Wang Z H, Zhang W X, Haller E E, Ager J W, Dobrovitski V V and Lyon S A 2010 J. Phys. B Atomic 44 154004 (arXiv: 1011.1903v2 [quant-ph])
[22] Kabytayev C 2015 Quantum control for time-dependent noise (Atlanta: Georgia Institute of Technology)
[23] Miller S L and Childers D G 2012 Probability and Random Processes: With Applications to Signal Processing and Communications (Academic Press) pp. 164-165
[24] Roos C 2000 Controlling the quantum state of trapped ions (Innsbruck: University of Innsbruck)
[25] Lutchyn R M, Cywiński L, Nave C P and Sarma S D 2008 Phys. Rev. B 78 1436
[26] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[1] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
No Suggested Reading articles found!