|
|
A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control |
J P Singh1, V T Pham2, T Hayat3,4, S Jafari5, F E Alsaadi6, B K Roy1 |
1 Department of Electrical Engineering, National Institute of Technology Silchar, 788010, India;
2 School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Viet Nam;
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
4 Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
5 Ambikar University of Technology, Tehran, 15875-4413, Iran;
6 Department of Information Technology, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia |
|
|
Abstract This paper reports a new simple four-dimensional (4D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.
|
Received: 07 April 2018
Revised: 20 July 2018
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
Corresponding Authors:
J P Singh
E-mail: jayprakash1261@gmail.com
|
Cite this article:
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control 2018 Chin. Phys. B 27 100501
|
[1] |
Wang Z, Akgul A, Pham V T and Jafari S 2017 Nonlinear Dyn. 89 1877
|
[2] |
Aram Z, Jafari S, Ma J, Sprott J C, Zendehrouh S and Pham V T 2017 Commun. Nonlinear Sci. Numer. Simul. 44 449
|
[3] |
Rajagopal K, Karthikeyan A and Srinivasan A K 2017 Nonlinear Dyn. 87 2281
|
[4] |
Pham V T, Volos C, Jafari S, Vaidyanathan S, Kapitaniak T and Wang X 2016 Int. J. Bifur. Chaos 26 1650139
|
[5] |
Pham V T, Vaidyanathan S, Volos C and Jafari S 2015 Eur. Phys. J. Special Topics 224 1507
|
[6] |
Shahzad M, Pham V T, Ahmad M, Jafari S and Hadaeghi F 2015 Eur. Phys. J. Special Topics 224 1637
|
[7] |
Sprott J C 2010 Elegant Chaos:Algebraically Simple Chaotic Flows Singapore:World Scientific
|
[8] |
Chlouverakis K E and Sprott, J 2006 Chaos, Solitons and Fractals 28 739
|
[9] |
Dalkiran F Y and Sprott J C 2016 Int. J. Bifur. Chaos 26 1650189
|
[10] |
Li C, Sprott J C and Xing H 2016 Phys. Lett. A 380 1172
|
[11] |
Li P, Zheng T, Li C, Wang X and Hu W 2016 Nonlinear Dyn. 86 197
|
[12] |
Kengne J, Jafari S, Njitacke Z, Khanian M Y and Cheukem A 2017 Commun. Nonlinear Sci. Numer. Simul. 52 62
|
[13] |
Singh P P, Singh J P and Roy B 2014 Chaos, Solitons and Fractals 69 31
|
[14] |
Singh J P and Roy B 2016 Chaos, Solitons and Fractals 92 73
|
[15] |
Singh J P and Roy B 2016 Optik 127 11982
|
[16] |
Leonov G A, Kuznetsov N V and Mokaev TN H 2015 Eur. Phys. J. Special Topics 224 1421
|
[17] |
Sharma P, Shrimali M, Prasad A, Kuznetsov N and Leonov G 2015 Eur. Phys. J. Special Topics 224 1485
|
[18] |
Sharma P R, Shrimali M D, Prasad A, Kuznetsov N and Leonov G 2015 Int. J. Bifur. Chaos 25 1550061
|
[19] |
Danca M F and Kuznetsov N 2017 Chaos, Solitons and Fractals 103 144
|
[20] |
Danca M F, Kuznetsov N and Chen G 2017 Nonlinear Dyn. 88 791
|
[21] |
Kuznetsov N, Leonov G, Yuldashev M and Yuldashev R 2017 Commun. Nonlinear Sci. Numer. Simul. 51 39
|
[22] |
Leonov G A and Kuznetsov N V 2013 Int. J. Bifur. Chaos 23 1330002
|
[23] |
Leonov G, Kuznetsov N, Kiseleva M, Solovyeva E and Zaretskiy A 2014 Nonlinear Dyn. 77 277
|
[24] |
Leonov G, Kuznetsov N and Mokaev T 2015 Commun. Nonlinear Sci. Numer. Simul. 28 166
|
[25] |
Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1
|
[26] |
Molaie M, Jafari S and Sprott J C 2013 Int. J. Bifur. Chaos 23 1350188
|
[27] |
Kingni S T, Jafari S, Simo H and Woafo P 2014 Eur. Phys. J. Plus 29 1
|
[28] |
Pham V T, Jafari S, Kapitaniak T, Volos C and Kingni S T 2017 Int. J. Bifur. Chaos 27 1750053
|
[29] |
Pham V T, Wang X, Jafari S, Volos C and Kapitaniak T 2017 Int. J. Bifur. Chaos 27 1750097
|
[30] |
Brezetskyi S, Dudkowski D and Kapitaniak T 2015 Eur. Phys. J. Special Topics 224 1459
|
[31] |
Singh J P and Roy B 2017 Int. J. Dyn. Control 6 529
|
[32] |
Wei Z 2011 Phys. Lett. A 376 102
|
[33] |
Pham V T, Kingni S T, Volos C, Jafari S and Kapitaniak T 2017 AEU-Int. J. Electron. Commun. 78 220
|
[34] |
Pham V T, Volos C, Jafari S and Kapitaniak T 2017 Nonlinear Dyn. 87 2001
|
[35] |
Singh J P and Roy B 2017 Optik 145 209
|
[36] |
Singh J P and Roy B 2017 Nonlinear Dyn. 89 1845
|
[37] |
Barati K, Jafari S, Sprott J C and Pham V T 2016 Int. J. Bifur. Chaos 26 1630034
|
[38] |
Pham V T, Jafari S and Volos C 2017 Optik 131 343
|
[39] |
Tlelo-Cuautle E, de la Fraga L G, Pham V T, Volos C, Jafari S and de Jesus Quintas-Valles A 2017 Nonlinear Dyn. 89 1
|
[40] |
Elhadj Z and Sprott J 2013 Palestine J. Math. 2 38
|
[41] |
Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 Nonlinear Dyn. 89 1
|
[42] |
Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E and Tombras G 2017 Circ. Sys. Signal Process. 1
|
[43] |
Lai Q and Chen S 2016 Int. J. Control. Autom. Syst. 14 1124
|
[44] |
Qiang L, Tsafack N, Jacques K and Zhao X W 2018 Chaos, Solitons and Fractals 107 92
|
[45] |
Lai Q, Akgul A, Zhao X W and Pei H 2017 Int. J. Bifurc. Chaos 27 1750142
|
[46] |
Lai Q, Akgul A, Li C, Xu G and Çavuşoǧlu Ü 2018 Entropy 20 1
|
[47] |
Ling G, Guan Z, Hu B, Lai Q and Wu Y 2017 IEEE Trans. Nanobiosci. 16 216
|
[48] |
Guan Z H, Lai Q, Chi M, Cheng X M and Liu F 2014 Nonlinear Dyn. 75 331
|
[49] |
Li C, Sprott J C, Kapitaniak T and Lu T 2018 Chaos, Solitons and Fractals 109 76
|
[50] |
Li C, Thio W J, Iu H H and Lu T 2018 IEEE Access 6 12945
|
[51] |
Li C, Thio W J, Sprott J C, Herbert H C and Xu Y 2018 IEEE Access 6 1
|
[52] |
Kingni S, Jafari S, Simo H and Woafo P 2014 Eur. Phys. J. Plus 129 76
|
[53] |
Zhusubaliyev Z T, Mosekilde E, Rubanov V G and Nabokov R A 2015 Physica D:Nonlinear Phenomena 30 6
|
[54] |
Wei Z, Moroz I, Wang Z, Sprott J C and Kapitaniak T 2016 Int. J. Bifur. Chaos 26 1650125
|
[55] |
Wang X, Pham V T, Jafari S, Volos C, Munoz-Pacheco J M and Tlelo-Cuautle E 2017 IEEE Access 5 8851
|
[56] |
Wei Z and Wang Z 2013 Kybernetika 49 359
|
[57] |
Wei Z and Yang Q 2011 Nonlinear Analysis:Real World Applications 12 106
|
[58] |
Wei Z, Zhang W, Wang Z and Yao M 2015 Int. J. Bifur. Chaos 25 1550028
|
[59] |
Wei Z and Pehlivan I 2012 Optoelectronics and Advanced Materials-Rapid Communications 6 742
|
[60] |
Wei Z 2012 Computers and Mathematics with Applications 63 728
|
[61] |
Wei Z and Yang Q 2012 Nonlinear Dyn. 68 543
|
[62] |
Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
|
[63] |
Wei Z and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
|
[64] |
Wei Z, Yu P, Zhang W and Yao M 2015 Nonlinear Dyn. 82 131
|
[65] |
Lai Q and Chen S 2016 Int. J. Bifur. Chaos 26 1650177
|
[66] |
Kapitaniak T and Leonov G A 2015 Eur. Phys. J. Special Topics 224 1405
|
[67] |
Maistrenko Y, Kapitaniak T and Szuminski P 1997 Phys. Rev. E 56 6393
|
[68] |
Blażejczyk-Okolewska B and Kapitaniak T 1998 Chaos, Solitons and Fractals 9 1439
|
[69] |
Silchenko A, Kapitaniak T and Anishchenko V 1999 Phys. Rev. E 59 1593
|
[70] |
Wang Z, Yuan J and Wei J 2017 Optik 137 85
|
[71] |
Singh P P, Singh J P and Roy B K 2017 IETE J. Res. 69 853
|
[72] |
Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
|
[73] |
Miao Q, Tang Y, Lu S and Fang J 2009 Nonlinear Dyn. 57 107
|
[74] |
Khan M A and Poria S 2013 Pramana. 81 395
|
[75] |
Singh J P and Roy B K 2017 , DOI: 0142331217727580
|
[76] |
Chen M, Wu Q and Jiang C 2012 Nonlinear Dyn. 70 2421
|
[77] |
Hu C and Yu J 2016 Chaos, Solitons and Fractals 91 262
|
[78] |
Khalil H K 1996 (New Jersey:Prentice-Hall) 2
|
[79] |
Jafari M A, Mliki E, Akgul A, et al. 2017 Nonlinear Dyn. 88 2303
|
[80] |
Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D:Nonlinear Phenomena 16 285
|
[81] |
Ma J, Wu X, Chu R and Zhang L 2014 Nonlinear Dyn. 76 1951
|
[82] |
Li Q, Zeng H and Li J 2015 Nonlinear Dyn. 79 2295
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|