Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100501    DOI: 10.1088/1674-1056/27/10/100501
GENERAL Prev   Next  

A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control

J P Singh1, V T Pham2, T Hayat3,4, S Jafari5, F E Alsaadi6, B K Roy1
1 Department of Electrical Engineering, National Institute of Technology Silchar, 788010, India;
2 School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Viet Nam;
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
4 Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
5 Ambikar University of Technology, Tehran, 15875-4413, Iran;
6 Department of Information Technology, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia
Abstract  

This paper reports a new simple four-dimensional (4D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.

Keywords:  new hyperjerk chaotic system      stable equilibrium      hidden attractors      adaptive backstepping control      synchronization  
Received:  07 April 2018      Revised:  20 July 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
Corresponding Authors:  J P Singh     E-mail:  jayprakash1261@gmail.com

Cite this article: 

J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control 2018 Chin. Phys. B 27 100501

[1] Wang Z, Akgul A, Pham V T and Jafari S 2017 Nonlinear Dyn. 89 1877
[2] Aram Z, Jafari S, Ma J, Sprott J C, Zendehrouh S and Pham V T 2017 Commun. Nonlinear Sci. Numer. Simul. 44 449
[3] Rajagopal K, Karthikeyan A and Srinivasan A K 2017 Nonlinear Dyn. 87 2281
[4] Pham V T, Volos C, Jafari S, Vaidyanathan S, Kapitaniak T and Wang X 2016 Int. J. Bifur. Chaos 26 1650139
[5] Pham V T, Vaidyanathan S, Volos C and Jafari S 2015 Eur. Phys. J. Special Topics 224 1507
[6] Shahzad M, Pham V T, Ahmad M, Jafari S and Hadaeghi F 2015 Eur. Phys. J. Special Topics 224 1637
[7] Sprott J C 2010 Elegant Chaos:Algebraically Simple Chaotic Flows Singapore:World Scientific
[8] Chlouverakis K E and Sprott, J 2006 Chaos, Solitons and Fractals 28 739
[9] Dalkiran F Y and Sprott J C 2016 Int. J. Bifur. Chaos 26 1650189
[10] Li C, Sprott J C and Xing H 2016 Phys. Lett. A 380 1172
[11] Li P, Zheng T, Li C, Wang X and Hu W 2016 Nonlinear Dyn. 86 197
[12] Kengne J, Jafari S, Njitacke Z, Khanian M Y and Cheukem A 2017 Commun. Nonlinear Sci. Numer. Simul. 52 62
[13] Singh P P, Singh J P and Roy B 2014 Chaos, Solitons and Fractals 69 31
[14] Singh J P and Roy B 2016 Chaos, Solitons and Fractals 92 73
[15] Singh J P and Roy B 2016 Optik 127 11982
[16] Leonov G A, Kuznetsov N V and Mokaev TN H 2015 Eur. Phys. J. Special Topics 224 1421
[17] Sharma P, Shrimali M, Prasad A, Kuznetsov N and Leonov G 2015 Eur. Phys. J. Special Topics 224 1485
[18] Sharma P R, Shrimali M D, Prasad A, Kuznetsov N and Leonov G 2015 Int. J. Bifur. Chaos 25 1550061
[19] Danca M F and Kuznetsov N 2017 Chaos, Solitons and Fractals 103 144
[20] Danca M F, Kuznetsov N and Chen G 2017 Nonlinear Dyn. 88 791
[21] Kuznetsov N, Leonov G, Yuldashev M and Yuldashev R 2017 Commun. Nonlinear Sci. Numer. Simul. 51 39
[22] Leonov G A and Kuznetsov N V 2013 Int. J. Bifur. Chaos 23 1330002
[23] Leonov G, Kuznetsov N, Kiseleva M, Solovyeva E and Zaretskiy A 2014 Nonlinear Dyn. 77 277
[24] Leonov G, Kuznetsov N and Mokaev T 2015 Commun. Nonlinear Sci. Numer. Simul. 28 166
[25] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1
[26] Molaie M, Jafari S and Sprott J C 2013 Int. J. Bifur. Chaos 23 1350188
[27] Kingni S T, Jafari S, Simo H and Woafo P 2014 Eur. Phys. J. Plus 29 1
[28] Pham V T, Jafari S, Kapitaniak T, Volos C and Kingni S T 2017 Int. J. Bifur. Chaos 27 1750053
[29] Pham V T, Wang X, Jafari S, Volos C and Kapitaniak T 2017 Int. J. Bifur. Chaos 27 1750097
[30] Brezetskyi S, Dudkowski D and Kapitaniak T 2015 Eur. Phys. J. Special Topics 224 1459
[31] Singh J P and Roy B 2017 Int. J. Dyn. Control 6 529
[32] Wei Z 2011 Phys. Lett. A 376 102
[33] Pham V T, Kingni S T, Volos C, Jafari S and Kapitaniak T 2017 AEU-Int. J. Electron. Commun. 78 220
[34] Pham V T, Volos C, Jafari S and Kapitaniak T 2017 Nonlinear Dyn. 87 2001
[35] Singh J P and Roy B 2017 Optik 145 209
[36] Singh J P and Roy B 2017 Nonlinear Dyn. 89 1845
[37] Barati K, Jafari S, Sprott J C and Pham V T 2016 Int. J. Bifur. Chaos 26 1630034
[38] Pham V T, Jafari S and Volos C 2017 Optik 131 343
[39] Tlelo-Cuautle E, de la Fraga L G, Pham V T, Volos C, Jafari S and de Jesus Quintas-Valles A 2017 Nonlinear Dyn. 89 1
[40] Elhadj Z and Sprott J 2013 Palestine J. Math. 2 38
[41] Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 Nonlinear Dyn. 89 1
[42] Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E and Tombras G 2017 Circ. Sys. Signal Process. 1
[43] Lai Q and Chen S 2016 Int. J. Control. Autom. Syst. 14 1124
[44] Qiang L, Tsafack N, Jacques K and Zhao X W 2018 Chaos, Solitons and Fractals 107 92
[45] Lai Q, Akgul A, Zhao X W and Pei H 2017 Int. J. Bifurc. Chaos 27 1750142
[46] Lai Q, Akgul A, Li C, Xu G and Çavuşoǧlu Ü 2018 Entropy 20 1
[47] Ling G, Guan Z, Hu B, Lai Q and Wu Y 2017 IEEE Trans. Nanobiosci. 16 216
[48] Guan Z H, Lai Q, Chi M, Cheng X M and Liu F 2014 Nonlinear Dyn. 75 331
[49] Li C, Sprott J C, Kapitaniak T and Lu T 2018 Chaos, Solitons and Fractals 109 76
[50] Li C, Thio W J, Iu H H and Lu T 2018 IEEE Access 6 12945
[51] Li C, Thio W J, Sprott J C, Herbert H C and Xu Y 2018 IEEE Access 6 1
[52] Kingni S, Jafari S, Simo H and Woafo P 2014 Eur. Phys. J. Plus 129 76
[53] Zhusubaliyev Z T, Mosekilde E, Rubanov V G and Nabokov R A 2015 Physica D:Nonlinear Phenomena 30 6
[54] Wei Z, Moroz I, Wang Z, Sprott J C and Kapitaniak T 2016 Int. J. Bifur. Chaos 26 1650125
[55] Wang X, Pham V T, Jafari S, Volos C, Munoz-Pacheco J M and Tlelo-Cuautle E 2017 IEEE Access 5 8851
[56] Wei Z and Wang Z 2013 Kybernetika 49 359
[57] Wei Z and Yang Q 2011 Nonlinear Analysis:Real World Applications 12 106
[58] Wei Z, Zhang W, Wang Z and Yao M 2015 Int. J. Bifur. Chaos 25 1550028
[59] Wei Z and Pehlivan I 2012 Optoelectronics and Advanced Materials-Rapid Communications 6 742
[60] Wei Z 2012 Computers and Mathematics with Applications 63 728
[61] Wei Z and Yang Q 2012 Nonlinear Dyn. 68 543
[62] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
[63] Wei Z and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
[64] Wei Z, Yu P, Zhang W and Yao M 2015 Nonlinear Dyn. 82 131
[65] Lai Q and Chen S 2016 Int. J. Bifur. Chaos 26 1650177
[66] Kapitaniak T and Leonov G A 2015 Eur. Phys. J. Special Topics 224 1405
[67] Maistrenko Y, Kapitaniak T and Szuminski P 1997 Phys. Rev. E 56 6393
[68] Blażejczyk-Okolewska B and Kapitaniak T 1998 Chaos, Solitons and Fractals 9 1439
[69] Silchenko A, Kapitaniak T and Anishchenko V 1999 Phys. Rev. E 59 1593
[70] Wang Z, Yuan J and Wei J 2017 Optik 137 85
[71] Singh P P, Singh J P and Roy B K 2017 IETE J. Res. 69 853
[72] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[73] Miao Q, Tang Y, Lu S and Fang J 2009 Nonlinear Dyn. 57 107
[74] Khan M A and Poria S 2013 Pramana. 81 395
[75] Singh J P and Roy B K 2017 , DOI: 0142331217727580
[76] Chen M, Wu Q and Jiang C 2012 Nonlinear Dyn. 70 2421
[77] Hu C and Yu J 2016 Chaos, Solitons and Fractals 91 262
[78] Khalil H K 1996 (New Jersey:Prentice-Hall) 2
[79] Jafari M A, Mliki E, Akgul A, et al. 2017 Nonlinear Dyn. 88 2303
[80] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D:Nonlinear Phenomena 16 285
[81] Ma J, Wu X, Chu R and Zhang L 2014 Nonlinear Dyn. 76 1951
[82] Li Q, Zeng H and Li J 2015 Nonlinear Dyn. 79 2295
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[14] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!