Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100312    DOI: 10.1088/1674-1056/27/10/100312
GENERAL Prev   Next  

Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential

Ying Wang(王颖)1, Shuyu Zhou(周蜀渝)2
1 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

We study the phenomena of the sonic horizon in an ultracold atomic Fermi system in an elongated harmonic trap. Based on the one-dimensional Gross-Pitaevskii equation model and variational method combined with exact derivation approach, we derive an analytical formula which describes the occurrence of the sonic horizon and the associated Hawking radiation temperature. Using a pictorial demonstration of the key physical quantities we identify the features reported in prior numerical studies of a three-dimensional (3D) ultracold atomic system, proving the applicability of the theoretical model presented here.

Keywords:  sonic horizon      ultracold Fermi system      Gross-Pitaevskii equation  
Received:  18 April 2018      Revised:  15 July 2018      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.-a (Nonlinear dynamics and chaos)  
  47.37.+q (Hydrodynamic aspects of superfluidity; quantum fluids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11547024, 11791240178, and 11674338.

Corresponding Authors:  Ying Wang, Shuyu Zhou     E-mail:  wangying@just.edu.cn;syz@siom.ac.cn

Cite this article: 

Ying Wang(王颖), Shuyu Zhou(周蜀渝) Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential 2018 Chin. Phys. B 27 100312

[1] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[2] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[3] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926
[4] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[5] Engels P and Atherton C 2007 Phys. Rev. Lett. 99 160405
[6] Jo G B, Choi J H, Christensen C A, Pasquini T A, Lee Y R, Ketterle W and Pritchard D E 2007 Phys. Rev. Lett. 98 180401
[7] Becker C, Stellmer S, Soltan-Panahi P, Dorscher S, Baumert M, Richter E M, Kronjager J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
[8] Unruh W G 1981 Phys. Rev. Lett. 46 1351
[9] Novello M, Visser M and Volovik G 2002 Artificial Black Holes (Singapore:World Scientific)
[10] Barcelo C, Liberati S and Visser M 2005 Living Rev. Relativ. 8 12
[11] Steinhauer J 2016 Nat. Phys. 12 959
[12] Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643
[13] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
[14] Mateos J and Sabín C 2017 rXiv:arXiv 1706.0098
[15] Wang Y, Zhou Y and Zhou S Y 2016 Sci. Rep. 6 38512
[16] Liu Y K and Yang S J 2014 Chin. Phys. B 23 0110308
[17] Song C S, Li J, and Zong F D 2012 Chin. Phys. B 21 020306
[18] Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023611
[19] Zwerger W 2012 The BCS-BEC Crossover and the Unitary Fermi Gases (Berlin:Springer)
[20] Levin K, Fetter A L and Stamper-Kurn D M 2012 Ultracold Bosonic and Fermionic Gases (Oxford:Elsevier)
[21] Kurita Y and Morinari T 2007 Phys. Rev. A 76 053603
[22] Wen W and Huang G X 2009 Phys. Rev. A 79 023605
[23] Wang Y and Zhou Y 2014 AIP Adv. 4 067131
[24] Sanchez A S and Bishop A R 1998 SIAM Rev. 40 579
[25] Zamora-Sillero E and Shapovalov A 2011 J. Phys. A:Math. Theor. 44 065204
[26] Wang Y, Zhou Y, Zhou S Y and Zhang Y S 2016 Phys. Rev. E 94 012225
[1] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[2] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[3] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[4] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
[5] Three-dimensional solitons in two-component Bose-Einstein condensates
Liu Yong-Kai (刘永恺), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2014, 23(11): 110308.
[6] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[7] Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory
Zhao Li (赵力), Yang Jie (杨捷), Xie Qun-Ying (谢群英), Tian Miao (田苗). Chin. Phys. B, 2012, 21(9): 090304.
[8] Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic–quintic Gross–Pitaevskii equation
Dai Chao-Qing(戴朝卿), Chen Rui-Pin(陈瑞品), and Wang Yue-Yue(王悦悦) . Chin. Phys. B, 2012, 21(3): 030508.
[9] Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates
Song Chang-Sheng(宋昌盛), Li Jing(黎菁), and Zong Feng-De(宗丰德) . Chin. Phys. B, 2012, 21(2): 020306.
[10] Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap
Shi Yu-Ren (石玉仁), Liu Cong-Bo (刘丛波), Wang Guang-Hui (王光辉), Zhou Zhi-Gang (周志刚). Chin. Phys. B, 2012, 21(12): 120307.
No Suggested Reading articles found!