Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 093102    DOI: 10.1088/1674-1056/27/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Diffusion Monte Carlo calculations on LaB molecule

Nagat Elkahwagy1, Atif Ismail1,2, S M A Maize3, K R Mahmoud1
1 Department of Physics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt;
2 Department of Physics, Faculty of Applied Sciences, Umm Al Qura University, Makkah, Saudi Arabia;
3 Department of Physics, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
Abstract  

Potential energy curves for the lowest electronic states of LaB and LaB- have been calculated by ab initio calculations. The diffusion Monte Carlo method has been employed in combination with three different trial functions. Spectroscopic constants have also been numerically derived for the neutral molecule and compared with the only available theoretical work;[19] however, predictions are provided for the corresponding constants for the anionic species which have not been reported yet. Our calculations suggest the high spin quintet state of LaB as the ground state with the triplet state higher in energy irrespective of the type of the functional used. This suggestion is in good accordance with the previous theoretical results calculated at B3LYP/LANL2DZ level of theory, whereas it contradicts with the prediction based upon B3LYP/SDD calculations in the same study. Moreover, variations of the permanent dipole moments as a function of the internuclear separations for the two electronic states of the neutral molecule have been studied and analyzed.

Keywords:  potential energy curve      lanthanum boride      diffusion Monte Carlo      dipole moment  
Received:  04 April 2018      Revised:  14 June 2018      Accepted manuscript online: 
PACS:  31.30.jp (Electron electric dipole moment)  
  31.15.E-  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
Corresponding Authors:  Nagat Elkahwagy     E-mail:  nagat_mhd@yahoo.com

Cite this article: 

Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud Diffusion Monte Carlo calculations on LaB molecule 2018 Chin. Phys. B 27 093102

[1] Dolg M and Stoll H 1989 Theor. Chim. Acta 75 369
[2] Laerdahl J K, Fægri K, Visscher L and Saue T 1998 J. Chem. Phys. 109 10806
[3] Hong G, Dolg M and Li L 2001 Chem. Phys. Lett. 334 396
[4] Xiaoyan C, Wenjian L and Dolg M 2002 M. Sci. Chin. B 45 91
[5] Casarrubios M and Seijo L 1999 J. Chem. Phys. 110 784
[6] Küchle W, Dolg M and Stoll H 1997 J. Phys. Chem. 101 7128
[7] Wang X, Chertihin G V and Andrews L J 2002 J. Phys. Chem. A 106 9213
[8] Wittborn C and Wahlgren U 1995 Chem. Phys. 201 357
[9] Ram R S and Bernarth P F 1996 J. Chem. Phys. 104 6444
[10] Yarlagadda S, Mukund S and Nakhate S G 2013 Chem. Phys. Lett. 573 1
[11] Bernard A and Chevillard J 2001 J. Mol. Spectrosc. 208 150
[12] Mukund S, Yarlagadda S, Bhattacharyya S and Nakhate S G 2012 J. Chem. Phys. 137 234309
[13] Kaledin L, McCord J E and Heaven M C 1994 J. Opt. Soc. Am. B 11 219
[14] Schall H, Dulick M and Field R W 1987 J. Chem. Phys. 87 2898
[15] Barrow R F, Bastin M W, Moore D L J and Pott C J 1967 Nature 215 1072
[16] Lin-Hong C and Ren-Cheng S 2003 Commun. Theor. Phys. 39 323
[17] Cao X and Dolg M 2005 J. Theo. Comput. Chem. 4 583
[18] Huber K P and Herzberg G 1979 Mol. Spectra Mol. Struct. IV Constants DiAt. Molecules (New York:Van Nostrand) p. 372
[19] Kalamse V, Gaikwad S and Chaudhari A 2010 Bull. Mater. Sci. 33 233
[20] Wagner L K, Bajdich M and Mitas L 2009 J. Comp. Phys. 228 3390
[21] Anderson J B 2007 Quantum Monte Carlo:Origins, Development, Applications (UK:Oxford University Press)
[22] Nightingale M P and Umrigar C J 1999 Quantum Monte Carlo Methods in Physics and Chemistry (Netherlands:Springer)
[23] Sobol L M 1994 A Primer for the Monte Carlo Method (Boca Raton:CRC Press)
[24] Schmidt M W, Boatz J A, Baldridge K K, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, windus T L, Dupuis M and Montgomery J A 1993 J. Comp. Chem. 14 1347
[25] Becke A D 1988 Phys. Rev. A 38 3098
[26] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[27] Stephens P, Devlin F, Chabalowski C and Frisch M J 1994 J. Phys. Chem. 98 11623
[28] Becke A D 1993 J. Chem. Phys. 98 5648
[29] Ermler W C, Roos R B and Christiansen P A 1991 Int. J. Quant. Chem. 40 829
[30] Burkatzki M, Filippi C and Dolg M 2007 J. Chem. Phys. 126 234105
[31] Bytautas L, Matsunaga N and Ruedenberg K 2010 J. Chem. Phys. 132 074307
[32] Feng Y, Liu L, Wang J T, Huang H and Guo Q X 2003 J. Chem. Inf. Comput. Sci. 43 2005
[33] Jursic B S 1998 J. Mol. Struct. (Theochem.) 422 253
[34] Song K S, Liu L and Guo Q X 2003 J. Org. Chem. 68 4604
[35] Feng Y, Huang H, Liu L and Guo Q X 2003 Phys. Chem. Chem. Phys. 5 685
[36] Song K S, Liu L and Guo Q X 2003 J. Org. Chem. 68 262
[37] Fu Y, Mou Y, Lin B L, Liu L and Guo Q X 2002 J. Phys. Chem. A 106 12386
[38] Cheng Y H, Fang Y, Zhao X, Liu L and Guo Q X 2002 Bull. Chem. Soc. Jpn. 75 1715
[39] Cheng Y H, Zhao X, Song K S, Liu L and Guo Q X 2002 J. Org. Chem. 67 6638
[40] Sevy A, Sorensen J J, Persinger T D, Franchina J A, Johnson E L and Morse M D 2017 J. Chem. Phys. 147 084301
[41] Tamukong P K, Theis D, Khait Y G and Hoffmann M R 2012 J. Phys. Chem. A 116 18
[42] Cernusák I, Dallos M, Lischka H, Müller T and Uhlár M 2007 J. Chem. Phys. 126 214311
[43] Boldyrev A L, Gonzales N and Simons J 1994 J. Phys. Chem. 98 9931
[44] Kalemos A and Mavridis A 1999 Adv. Quantum Chem. 32 69
[45] Tzeli D and Mavridis A 2008 J. Chem. Phys. 128 034309
[46] Pototschnig J V, Hauser A W and Ernst W E 2016 Phys. Chem. Chem. Phys. 18 5964
[47] Krois G, Pototschnig J V, Lackner F and Ernst W E 2013 J. Phys. Chem. A 117 13719
[48] Pototschnig J V, Krois G, Lackner F and Ernst W E 2014 J. Chem. Phys. 141 234309
[1] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[2] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[6] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[7] Molecular opacities of low-lying states of oxygen molecule
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国). Chin. Phys. B, 2020, 29(2): 023101.
[8] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[9] Molecule opacities of X2Σ+, A2Π, and B2Σ+ states of CS+
Xiao-He Lin(林晓贺), Gui-Ying Liang(梁桂颖), Jian-Guo Wang(王建国), Yi-Geng Peng(彭裔耕), Bin Shao(邵彬), Rui Li(李瑞), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(5): 053101.
[10] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[11] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[12] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[13] A sensitive detection of high Rydberg atom with large dipole moment
Shan-Shan Zhang(张珊珊), Hong Cheng(成红), Pei-Pei Xin(辛培培), Han-Mu Wang(王汉睦), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(7): 074207.
[14] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[15] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
No Suggested Reading articles found!