Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074207    DOI: 10.1088/1674-1056/27/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A sensitive detection of high Rydberg atom with large dipole moment

Shan-Shan Zhang(张珊珊)1,2, Hong Cheng(成红)1,2, Pei-Pei Xin(辛培培)1,2, Han-Mu Wang(王汉睦)1,2, Zi-Shan Xu(徐子珊)1,2, Hong-Ping Liu(刘红平)1,2
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report a sensitive detection of high Rydberg atom with large dipole moment utilizing its deflection near a pair of parallel cylindrical copper rods which are oppositely charged. When the low-field seeking state Rydberg atoms fly across the gradient electric field formed by the pair of rods, they will be pushed away from the rods while the high-field seeking state ones will be attracted towards the rods. These atoms will form different patterns on an ion imaging system placed downwards at the end of the rods. The spatial distribution of the deflected atoms on the imaging system is also simulated, in good agreement with the experimental results, from which we can deduce the quantum state information of the excited atoms. This state resolvable Rydberg atom detection can be used for the dynamics research of the dipole-dipole interaction between atoms with large dipole moments.
Keywords:  Rydberg Stark state      sodium atom      deflection      dipole moment  
Received:  27 January 2018      Revised:  16 April 2018      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.60.+i (Zeeman and Stark effects)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91421305, 91121005, and 11674359) and the National Key Basic Research Program of China (Grant No. 2013CB922003).
Corresponding Authors:  Hong-Ping Liu     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Shan-Shan Zhang(张珊珊), Hong Cheng(成红), Pei-Pei Xin(辛培培), Han-Mu Wang(王汉睦), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平) A sensitive detection of high Rydberg atom with large dipole moment 2018 Chin. Phys. B 27 074207

[1] Weimer H, Muller M, Lesanovsky I, Zoller P and Buchler H P 2010 Nat. Phys. 6 382
[2] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[3] Ko H and Hogan S D 2014 Phys. Rev. A 89 053410
[4] Lancuba P and Hogan S D 2013 Phys. Rev. A 88 043427
[5] Vliegen E and Merkt F 2006 Phys. Rev. Lett. 97 033002
[6] Vliegen E, Limacher P A and Merkt F 2006 Eur. Phys. J. D 40 73
[7] Hogan S D and Merkt F 2008 Phys. Rev. Lett. 100 043001
[8] Seiler C, Hogan S D, Schmutz H, Agner J A and Merkt F 2011 Phys. Rev. Lett. 106 073003
[9] Hogan S D, Seiler C and Merkt F 2013 J. Phys. B:At. Mol. Opt. Phys. 46 045303
[10] Wall T E, Alonso A M, Cooper B S, Deller A, Hogan S D and Cassidy D B 2015 Phys. Rev. Lett. 114 173001
[11] Goodgame A L and Softley T P 1999 J. Phys. B:At. Mol. Opt. Phys. 32 4839
[12] Gerlach W and Stern O 1921 Z. Phys. 8 110
[13] Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press)
[14] Vliegen E and Merkt F 2005 J. Phys. B:At. Mol. Opt. Phys. 38 1623
[15] Vliegen E, Worner H J, Softley T P and Merkt F 2004 Phys. Rev. Lett. 92 033005
[16] Townsend D, Goodgame A L, Procter S R, Mackenzie S R and Softley T P 2001 J. Phys. B:At. Mol. Opt. Phys. 34 439
[17] Raithel G and Fauth M 1995 J. Phys. B:At. Mol. Opt. Phys. 28 1687
[18] Raithel G, Fauth M and Walther H 1993 Phys. Rev. A 47 419
[19] Raithel G, Held H, Marmet L and Walther H 1994 J. Phys. B:At. Mol. Opt. Phys. 27 2849
[20] Pisharody S N, Zeibel J G and Jones R R 2000 Phys. Rev. A 61 063405.
[21] Miculis K, Beterov I I, Bezuglov N N, Ryabtsev I I, Tretyakov D B, Ekers A and Klucharev A N 2005 J. Phys. B:At. Mol. Opt. Phys. 38 1811
[22] Littman M, Zimmerman M, Ducas T, Freeman R and Kleppner D 1976 Phys. Rev. Lett. 36 788
[23] Zimmerman M L, Littman M G, Kash M M and Kleppner D 1979 Phys. Rev. A 20 2251
[24] Gao W, Yang H F, Cheng H, Zhang S S, Liu D F and Liu H P 2015 Chin. Phys. B 24 013202
[25] Yang H F, Gao W, Quan W, Liu X J and Liu H P 2012 Phys. Rev. A 85 032508
[26] Gao W, Yang H F, Cheng H, Liu X J and Liu H P 2012 Phys. Rev. A 86 012517
[1] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[2] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[3] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[4] Molecular opacities of low-lying states of oxygen molecule
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国). Chin. Phys. B, 2020, 29(2): 023101.
[5] Molecule opacities of X2Σ+, A2Π, and B2Σ+ states of CS+
Xiao-He Lin(林晓贺), Gui-Ying Liang(梁桂颖), Jian-Guo Wang(王建国), Yi-Geng Peng(彭裔耕), Bin Shao(邵彬), Rui Li(李瑞), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(5): 053101.
[6] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[7] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[8] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[9] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[10] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[11] Ultrafast optical beam deflection in a pump probe configuration
Lingliang Liang(梁玲亮), Jinshou Tian (田进寿), Tao Wang(汪韬), Shengli Wu(吴胜利), Fuli Li(李福利), Junfeng Wang(王俊锋), Guilong Gao(高贵龙). Chin. Phys. B, 2016, 25(9): 090602.
[12] Configuration interaction studies on the spectroscopic properties of PbO including spin—orbit coupling
Wang Luo(罗旺), Rui Li(李瑞), Zhiqiang Gai(盖志强), RuiBo Ai(艾瑞波), Hongmin Zhang(张宏民), Xiaomei Zhang(张晓美), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(7): 073101.
[13] The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics
Jing-Yun Zhao(赵晶云), Li-Guo Qin(秦立国), Xun-Ming Cai(蔡勋明), Qiang Lin(林强), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2016, 25(4): 044202.
[14] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[15] Electric dipole moment function and line intensities for the ground state of carbon monxide
Chen Hua-Jun (陈华君), Wu Jie (吴杰), Liu Hao (刘浩), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 083102.
No Suggested Reading articles found!