Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093101    DOI: 10.1088/1674-1056/26/9/093101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods

Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  

The feasibility of spin-forbidden cooling of the InH molecule is investigated based on ab initio quantum chemistry calculations. The potential energy curves for the X1Σ0++, a3Π0-, a3Π0+, a3Π1, a3Π2, A1Π1, 13Σ0-+, and 13Σ1+ states of InH are obtained based on multi-reference configuration interaction plus the Davidson corrections method. The calculated spectroscopic constants are in good agreement with the available experimental data. In addition, the influences of the active space and spin-orbit coupling effects on the potential energy curves and spectroscopic constants are also studied. For Re of a3Π0-, a3Π0+, a3Π1, and a3Π2 states, the error from large active space is small. The potential energy curve of the A1Π1 state is not smooth for small active space. The spin-orbit coupling effects have great influences on the potential well depth and equilibrium internuclear distance of the A1Π state. The Franck-Condon factors and radiative lifetimes are obtained on the basis of the transition dipole moments of the a3Π0+→X1Σ0++,a3Π1→X1Σ0++,and A1Π1→X1Σ0++ transitions. Our calculation indicates that the a3Π1(v'=0)→X1Σ0++(v=0) transition provides a highly diagonally distributed Franck– Condon factor and a short radiative lifetime for the a3Π1 state, which can ensure rapid and efficient laser cooling of InH. The proposed laser drives a3Π0+→X1Σ0++ transitions by using three wavelengths.

Keywords:  spectroscopic constants      Franck-Condon factors      transition dipole moments      spin-forbidden cooling transition  
Received:  07 May 2017      Revised:  05 June 2017      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  37.10.Mn (Slowing and cooling of molecules)  
  87.80.Cc (Optical trapping)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11104217 and 11402199) and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

Corresponding Authors:  Yun-Guang Zhang     E-mail:  zygsr2010@163.com

Cite this article: 

Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈) Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods 2017 Chin. Phys. B 26 093101

[1] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[2] Hellwege K H and Hellwege A M 1974 Molecular Constants from Microwave, Molecular Beam, and Electron Spin Resonance Spectroscopy (Berlin: Springer-Verlag)
[3] Kobayashi J, Aikawa K, Oasa K and Inouye S 2014 Phys. Rev. A 89 021401
[4] Molony P K, Gregory P D, Ji Z H, Lu B, Koppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
[5] DeMille D 2002 Phys. Rev. Lett. 88 067901
[6] Ospelkaus S, Ni K K, Wang D, Miranda M H G de, Neyenhuis B, Quemener G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[7] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[8] Flambaum V V and Kozlov M G 2007 Phys. Rev. Lett. 99 150801
[9] Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R and Hinds E A 2011 Nature 473 493
[10] Isaev T A, Hoekstra S and Berger R 2010 Phys. Rev. A 82 052521
[11] Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
[12] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012 Chem. Rev. 112 5012
[13] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[14] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[15] Hendricks R J, Holland D A, Truppe S, Sauer B E and Tarbutt M R 2014 Frontiers in Physics 2 51
[16] Tarallo M G, Iwata G Z and Zelevinsky T 2016 Phys. Rev. A 93 032509
[17] Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G and Wang F H 2015 J. Chem. Phys. 143 024302
[18] Wan M J, Huang D H, Shao J X, Yu Y, Li S and Li Y Y 2015 J. Chem. Phys. 143 164312
[19] Wan M J, Shao J X, Huang D H, Jin C G, Yu Y and Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731
[20] Lane I C 2012 Phys. Chem. Chem. Phys. 14 15078
[21] Kang S Y, Gao Y F, Kuang F G, Gao T, Du J G and Jiang G 2015 Phys. Rev. A 91 042511
[22] You Y, Yang C L, Wang M S, Ma X G and Liu W W 2015 Phys. Rev. A 92 032502
[23] Gao Y F and Gao T 2014 Phys. Rev. A 90 052506
[24] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[25] Yang R, Gao Y F, Tang B and Gao T 2015 Phys. Chem. Chem. Phys. 17 1900
[26] You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G and Liu W W 2016 Phys. Chem. Chem. Phys. 18 19838
[27] Grundstrom B 1938 Nature 141 555
[28] Grundstrom B 1939 Z. Phys. 113 721
[29] Garton W R S 1951 Proc. Phys. Soc., London, Sect. A 64 509
[30] Neuhaus H 1958 Z. Phys. 150 4
[31] Neuhaus H 1958 Z. Phys. 152 402
[32] Ginter M L 1963 J. Mol. Spectrosc. 11 301
[33] Ginter M L 1966 J. Mol. Spectrosc. 20 240
[34] Ginter M L 1965 J. Chem. Phys. 42 3222
[35] Ogilvie J F 1992 Chem. Phys. Lett. 191 592
[36] Rajamanickam N, Murali T, Sakthivel T, Gomez M F and Gonzalez J J L 1993 Collect. Czech. Chem. Commun. 58 1491
[37] Zou W l, Lin M R, Yang X Z and Zhang B Z 2003 Phys. Chem. Chem. Phys. 5 1106
[38] Shayesteh A and Ghazizadeh E 2016 J. Mole. Spec. 330 72
[39] Werner H J, Knowles P J, Lindh R, Knizia G, Manby F R and Schütz M 2010 MOLPRO, version 2010.1, a package of ab initio programs, see http://www.molpro.net
[40] Laughoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[41] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[42] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[43] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[44] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[45] Douglas N and Kroll N M 1974 Ann. Phys. 82 89
[46] Hess B A 1986 Phys. Rev. A 33 3742
[47] Le Roy R J 2015 “LEVEL 8.2: A computer program for solving the radial Schrodinger equation for bound and quasibound levels,” Chemical Physics Research Report CP-668 (University of Waterloo)
[48] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company Inc.)
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[4] Molecular opacities of low-lying states of oxygen molecule
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国). Chin. Phys. B, 2020, 29(2): 023101.
[5] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[6] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[7] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[8] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[9] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
[10] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui (李瑞), Zhang Xiao-Mei (张晓美), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰). Chin. Phys. B, 2014, 23(5): 053101.
[11] Multireference calculations on low-lying states and X3Πu-3Πg absorption spectra of indium dimer
Zhou Ling-Song (周凌松), Yan Bing (闫冰), Jin Ming-Xing (金明星). Chin. Phys. B, 2013, 22(4): 043102.
[12] Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide
Yan Bing (闫冰), Zhang Yu-Juan (张玉娟). Chin. Phys. B, 2013, 22(2): 023103.
[13] Further investigations of the low-lying electronic states of AsO+ radical
Zhu Zun-Lue (朱遵略), Qiao Hao (乔浩), Lang Jian-Hua (郎建华), Sun Jin-Feng (孙金锋). Chin. Phys. B, 2013, 22(10): 103102.
[14] An ab initio investigation of the low-lying electronic states of BeH
Dong Yan-Ran (董嫣然), Zhang Shu-Dong (张树东), Hou Sheng-Wei (侯圣伟), Cheng Qi-Yuan (程起元 ). Chin. Phys. B, 2012, 21(8): 083104.
[15] The theoretical study on the potential energy curve for X 3Δ state of TiO molecule
Xu Guo-Liang(徐国亮), Xia Yao-Zheng(夏要争), Jia Guang-Rui(贾光瑞), Liu Yu-Fang(刘玉芳), and Zhang Xian-Zhou(张现周). Chin. Phys. B, 2010, 19(9): 093102.
No Suggested Reading articles found!