|
|
Molecular opacities of low-lying states of oxygen molecule |
Gui-Ying Liang(梁桂颖)1, Yi-Geng Peng(彭裔耕)1, Rui Li(李瑞)1,3, Yong Wu(吴勇)1,2, Jian-Guo Wang(王建国)1 |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China; 3 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China |
|
|
Abstract The X3Σg-, A'3△u, A3Σu+, 13Πg, and B3Σu- electronic states of oxygen molecule (O2) are calculated by the multiconfiguration self-consisted filed (MRCI) + Q method with the scalar relativistic correction and core-valence correlation correction. The obtained spectroscopic constants of the low-lying bound states are in excellent agreement with measurements. Based on the accurately calculated structure parameters, the opacities of the oxygen molecule at the temperatures of 1000 K, 2000 K, 2500 K, and 5000 K under a pressure of 100 atm (1 atm=1.01325×105 Pa) and the partition functions between 10 K and 104 K are obtained. It is found that with the increase of temperature, the opacities for transitions in a long wavelength range are enlarged because of the larger population on excited electronic states at the higher temperatures.
|
Received: 23 October 2019
Revised: 02 December 2019
Accepted manuscript online:
|
PACS:
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11934004, 11404180, and 11604052), and the China Postdoctoral Science Foundation (Grant No. 2018M631404). |
Corresponding Authors:
Yi-Geng Peng, Yong Wu
E-mail: pygdmn@mail.ustc.edu.cn;wu_yong@iapcm.ac.cn
|
Cite this article:
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国) Molecular opacities of low-lying states of oxygen molecule 2020 Chin. Phys. B 29 023101
|
[1] |
Chamberlain J W 1958 Astrophys. J. 128 713
|
[2] |
Geiss J, Gloeckler G, Mall U, von Steiger R, Galvin A B and Ogilvie K W 1994 Astron. & Astrophys. 282 924
|
[3] |
Huebner R H, Celotta R J, Mielczarek S R and Kuyatt C E 1975 J. Chem. Phys. 63 241
|
[4] |
Trajmar S, Cartwright D C and Hall R I 1976 J. Chem. Phys. 65 5275
|
[5] |
Juett A M, Schulz N S and Chakrabarty D 2004 Astrophys. J. 612 1
|
[6] |
Du J H and Peng L M 2018 Chin. Chem. Lett. 29 747
|
[7] |
Li F, Huang W H and Gong X Q 2018 Chin. Chem. Lett. 29 765
|
[8] |
Elkahwagy N, Ismail A, Maize S M A and Mahmoud K R 2018 Chin. Phys. Lett. 35 103101
|
[9] |
Wei H L and Liu X J 2018 Chin. Phys. B 27 123101
|
[10] |
Cao J J, Gong T, Li Z H, Ji Z H, Zhao Y T, Xiao L T and Jia S T 2018 Chin. Phys. Lett. 35 103301
|
[11] |
Hall D T, Strobel D F, Feldman P D, McGrath M A and Weaver H A 1995 Nature 373 677
|
[12] |
Meyer D M, Jura M and Cardelli J A 1998 Astrophys. J. 493 222
|
[13] |
Aoki W, Norris J E, Ryan S G, Beers T C, Christlieb N, Tsangarides S and Ando H 2004 Astrophys. J. 608 971
|
[14] |
Bekker A, Holland H D, Wang P L, Rumble.D I I I, Stein H J, Hannah J L, Coetzee L L and Beukes N J 2004 Nature 427 117
|
[15] |
Slanger T G, Pejaković D A, Kostko O, Matsiev D and Kalogerakis K S 2017 J. Geophys. Res. Space Phys. 122 3640
|
[16] |
Buldakov M A, Cherepanov V N, Korolev B V and Matrosov I I 2003 J. Mol. Spectrosc. 217 1
|
[17] |
Zhang T L, Herbert L, Shi J K, Wang X and Helmut L 2006 Chin. Phys. Lett. 23 2338
|
[18] |
Slanger T G, Cosby P C and Huestis D L 2003 J. Geophys. Res. Space Phys. 108 1089
|
[19] |
Pavlov A V 2011 Geomag. Aeron. 51 143
|
[20] |
Huber H P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand)
|
[21] |
Slanger T G and Cosby P C 1988 J. Chem. Phys. 92 267
|
[22] |
Kajihara H, Okamura T and Koda S 1997 J. Mol. Spectrosc. 183 72
|
[23] |
Edwards H G M, Good E A M and Long D A 1976 J. Chem. Soc. Faraday Trans. 72 865
|
[24] |
Borrell P M, Borrell P and Ramsay D A 1986 Can. J. Phys. 64 721
|
[25] |
Yoshino K, Murray J E, Esmond J R, Sun Y, Parkinson W H, Thoren A P, Learner R C M and Cox G 1994 Can. J. Phys. 72 1101
|
[26] |
Wildt J, Bednarek G and Fink E H 1991 Chem. Phys. 156 497
|
[27] |
Jenouvrier A, Mérienne M F, Coquart B, Carleer M, Fally S, Vandaele A C, Hermans C and Colin R 1999 J. Mol. Spectrosc. 198 136
|
[28] |
García Muñoz A, Mills F P, Slanger T G, Piccioni G and Drossart P 2009 J. Geophys. Res. 114 E1202
|
[29] |
Ciping C and Ramsay D A 1993 J. Mol. Spectrosc. 160 512
|
[30] |
Creek D M and Nicholls R W 1975 Proc. B. Soc. Lond. A 314 517
|
[31] |
Schaefer H F and Harris F E 1968 J. Chem. Phys. 48 4946
|
[32] |
Welch W M and Mizushima M 1972 Phys. Rev. A 5 2692
|
[33] |
Saxon R P and Liu B 1977 J. Chem. Phys. 67 5432
|
[34] |
Saxon R P and Liu B 1980 J. Chem. Phys. 73 870
|
[35] |
Partridge H, Bauschlicher C W, Langhoff S R and Taylor P R 1991 J. Chem. Phys. 95 8292
|
[36] |
Cosby P C and Huestis D L 1992 J. Chem. Phys. 97 6108
|
[37] |
Luque R G, Merchán M, Fülscher M P and Roos B O 1993 Chem. Phys. Lett. 204 323
|
[38] |
Yeager D L, Nichols J A and Golab J T 1994 J. Chem. Phys. 100 6514
|
[39] |
Byrman C P and Lenthe J H V 1996 Int. J. Quantum Chem. 58 351
|
[40] |
Beebe N H F, Thulstrip E K and Andersen A 1976 J. Chem. Phys. 64 2080
|
[41] |
Minaev B F 2000 Chem. Phys. 252 25
|
[42] |
Minaev B F and Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720
|
[43] |
Minaev B F and Telyatnik L G 2001 Opt. Spectrosc. 91 883
|
[44] |
Müller T, Dallos M, Dubrovay H L, Dubrovay Z and Szalay P 2001 Theor. Chem. Acc. 105 227
|
[45] |
Jiang W Y and Wilson A K 2011 J. Chem. Phys. 134 034101
|
[46] |
Werner H J, Knowles P J, Knizia G et al. 2010 MOLPRO: a Package of ab initio Programs
|
[47] |
Dunning T H 1989 J. Chem. Phys. 90 1007
|
[48] |
Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)
|
[49] |
Moore C E 1993 Atomic energy levels (Washington (DC): National Bureau of Standards)
|
[50] |
Bernath P 1996 Phys. Today 49 94
|
[51] |
Shi Y B, Stancil P C and Wang J G 2013 Astron. & Astraphys. 551 A140
|
[52] |
Gredel R, Carpentier Y, Rouillé G, Steglich M, Huisken F and Henning Th 2011 Astron. & Astraphys. 530 A26
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|