Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090307    DOI: 10.1088/1674-1056/27/9/090307
GENERAL Prev   Next  

Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine

Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲)
School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract  

We propose a method to improve the secret key rate of an eight-state continuous-variable quantum key distribution (CVQKD) by using a linear optics cloning machine (LOCM). In the proposed scheme, an LOCM is exploited to compensate for the imperfections of Bob's apparatus, so that the generated secret key rate of the eight-state protocol could be well enhanced. We investigate the security of our proposed protocol in a finite-size scenario so as to further approach the practical value of a secret key rate. Numeric simulation shows that the LOCM with reasonable tuning gain λ and transmittance τ can effectively improve the secret key rate of eight-state CVQKD in both an asymptotic limit and a finite-size regime. Furthermore, we obtain the tightest bound of the secure distance by taking the finite-size effect into account, which is more practical than that obtained in the asymptotic limit.

Keywords:  continuous-variable quantum key distribution      linear optics cloning machine      finite-size  
Received:  27 January 2018      Revised:  17 May 2018      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529).

Corresponding Authors:  Ling Zhang     E-mail:  lingzhang2017@foxmail.com

Cite this article: 

Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲) Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine 2018 Chin. Phys. B 27 090307

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[3] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[4] Samuel L B and Peter V L 2005 Rev. Mod. Phys. 77 513
[5] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[6] Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 20 4162
[7] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
[8] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[9] Wang X Y, Zhang Y C, Li Z Y, Xu B J, Yu S and Guo H 2017 Quantum Inf. Comput. 17 1123
[10] Milicevic M, Feng C, Zhang L M and Gulak P G 2018 Quantum Inf. 4 21
[11] Diamanti E and Leverrier A 2015 Entropy 17 6072
[12] Liao Q, Guo Y, Huang D, Huang P and Zeng G H 2018 New J. Phys. 20 023015
[13] Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
[14] Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
[15] Becir A, El-Orany F A A and Wahiddin M R B 2012 Int. J. Quantum Inform. 10 1250004
[16] Qu Z and Djordjevic I B 2017 IEEE Photon. J. 9 7600408
[17] Andersen U L, Josse V and Leuchs G 2005 Phys. Rev. Lett. 94 240503
[18] Guo Y, Lv G L and Zeng G H 2015 Quantum Inf. Process 14 4323
[19] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[20] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 6429
[21] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photonics 9 397
[22] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[23] Zhou C, Bao W S, Li H W, Wang Y, Li Y, Yin Z Q, Chen W and Han Z F 2013 Phys. Rev. A 89 052328
[24] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[25] Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
[26] Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310
[27] Yang J, Xu B, Peng X and Guo H 2012 Phys. Rev. A 85 052302
[28] Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
[29] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[30] Lodewyck J and Grangier P 2007 Phys. Rev. A 76 022332
[31] Thearle O, Assad S M and Symul T 2016 Phys. Rev. A 93 042343
[32] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[33] Guo Y, Qiu D L, Huang P and Zeng G H 2015 J. Phys. Soc. Jpn. 84 094003
[34] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
[35] Wu X D, Liao Q, Huang D, Wu X H and Guo Y 2017 Chin. Phys. B 26 110304
[36] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[37] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 52309
[38] Wang P, Wang X, Li J and Li Y 2017 Opt. Express 25 27995
[39] Zhang H, Fang J and He G Q 2012 Phys. Rev. A 86 022338
[40] Usenko V C and Filip R 2016 Entropy 18
[41] Yang Y, Xu L P, Yan B, Zhang H Y and Shen Y H 2017 Chin. Phys. B 26 110305
[42] Guo Y, Li R J, Liao Q, Zhou J and Huang D 2018 Phys. Lett. A 382 372
[1] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[2] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[3] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[4] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[5] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[6] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[7] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[8] Spherical reconciliation for a continuous-variable quantum key distribution
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光). Chin. Phys. B, 2017, 26(4): 040304.
[9] Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine
Xiao-Dong Wu(吴晓东), Qin Liao(廖骎), Duan Huang(黄端), Xiang-Hua Wu(吴湘华), Ying Guo(郭迎). Chin. Phys. B, 2017, 26(11): 110304.
[10] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[11] Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model
Zheng Rui (郑睿), Liu Bang-Gui (刘邦贵 ). Chin. Phys. B, 2012, 21(11): 116401.
[12] Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭). Chin. Phys. B, 2010, 19(7): 070516.
[13] Thermodynamic properties of a finite Bose gas in a harmonic trap
Wang Jian-Hui(王建辉) and Ma Yong-Li(马永利). Chin. Phys. B, 2010, 19(5): 050502.
[14] Finite-size effects in a D-dimensional ideal Fermi gas
Su Guo-Zhen(苏国珍), Ou Cong-Jie(欧聪杰), Wang A Qiu-Ping, and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(12): 5189-5195.
[15] Non-geometrical effects on Gaussian beams transmitting through a thin dielectric slab
Li Chun-Fang(李春芳), Zhang Yan(张妍), Chen Xi(陈玺), and Zhu Qi-Biao(朱绮彪) . Chin. Phys. B, 2008, 17(5): 1758-1768.
No Suggested Reading articles found!