Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098503    DOI: 10.1088/1674-1056/27/9/098503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model

Wei Wang(王伟)1,3, Jun-en Yao(姚骏恩)1,2,3
1 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China;
2 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083, China;
3 Laboratory of Micro-nano Measurement, Manipulation and Physics, Beihang University, Beijing 100083, China
Abstract  

This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distribution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classical Prandtl-Ishlinskii (CPI) model can hardly describe the asymmetric hysteresis. To overcome this limitation, various complex operators have been developed to replace the classical operator. In this study, the proposed MRIPI model maintains the classical operator while a modified input function based on the Fermi-Dirac distribution is presented to replace the classical input function. With this method, the MRIPI model can describe the asymmetric hysteresis of magnetostrictive actuators in a relatively simple mathematic format and has fewer parameters to be identified. A velocity-based sine cosine algorithm (VSCA) is also proposed for the parameter identification of the MRIPI model. To verify the validity of the MRIPI model, experiments are performed and the results are compared with those of the existing modeling methods.

Keywords:  Prandtl-Ishlinskii model      velocity-based sine cosine algorithm      asymmetric hysteresis nonlinearity      magnetostrictive actuator  
Received:  12 March 2018      Revised:  20 June 2018      Accepted manuscript online: 
PACS:  85.70.Ec (Magnetostrictive, magnetoacoustic, and magnetostatic devices)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
Corresponding Authors:  Jun-en Yao     E-mail:  yaojen@cae.cn

Cite this article: 

Wei Wang(王伟), Jun-en Yao(姚骏恩) Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model 2018 Chin. Phys. B 27 098503

[1] Joule J P 1847 Philosophical Magazine Series 3 30 76
[2] Olabi A G and Grunwald A 2008 Materials and Design 29 469
[3] Oates W S and Smith R C 2008 Journal of Inteltigent Material Systems and Structures 19 193
[4] Karunanidhi S and Singaperumal M 2010 Sensors and Actuators A:Physical 157 185
[5] Calkins F T, Smith R C and Flatau A B 2000 IEEE Transactions on Magnetics 36 429
[6] Aljanaideh O, Rakheja S and Su C Y 2014 Smart Materials and Structures 23 35002
[7] Dapino M J, Smith R C and Flatau A B 2000 IEEE Transactions on Magnetics 36 545
[8] Ikuta K, Tsukamoto M and Hirose S 1991 Proceedings of Micro Electro Mechanical Systems January 30, 1991, Nara, Japan, p. 103
[9] Smith R C, Seelecke S, Ounaies Z and Smith J 2003 Journal of Intelligent Material Systems and Structures 14 719
[10] Smith R C and Ounaies Z 2000 Journal of Intelligent Material Systems and Structures 11 62
[11] Liu C 2015 Computational Materials Science 110 295
[12] Liu Q Y, Luo X, Zhu H Y, Han Y W and Liu J X 2017 Acta Phys. Sin. 66 107501 (in Chinese)
[13] Mayergoyz I 1986 IEEE Transactions on Magnetics 22 603
[14] Macki J W, Nistri P and Zecca P 1993 Siam Review 35 94
[15] Brokate M and Sprekels J 1996 Hysteresis and Phase Transitions (Berlin:Springer) pp. 80-85
[16] Mittal S and Menq C H 2000 IEEE/ASME Transactions on Mechatronics 5 394
[17] Al Janaideh M, Rakheja S and Su C Y 2009 Smart Materials and Structures 18 3149
[18] Gu G Y, Zhu L M and Su C Y 2014 IEEE Transactions on Industrial Electronics 61 1583
[19] Yang M J, Li C X, Gu G Y and Zhu L M 2015 Smart Materials and Structures 24 125006
[20] Yu Z, Liu Y, Wang Y, Li S and Tan J 2017 Chinese Journal of Scientific Instrument 38 129 (in Chinese)
[21] Gu G Y, Yang M J and Zhu L M 2012 Review of Scientific Instruments 83 065106
[22] Al Janaideh M, Rakheja S and Su C Y 2011 IEEE/ASME Transactions on Mechatronics 16 734
[23] Shan G, Li Y, Zhang Y, Wang Z and Qian J 2016 Sensors and Actuators A:Physical 251 10
[24] Kuhnen K 2003 European Journal of Control 9 407
[25] Gan J, Zhang X and Wu H 2016 Review of Scientific Instruments 87 035002
[26] Rakotondrabe M 2017 Nonlinear Dynamics 89 481
[27] Wolpert D H and Macready W G 1997 IEEE Transactions on Evolutionary Computation 1 67
[28] Liu S and Su C Y 2011 Smart Materials and Structures 20 225
[29] Mirjalili S 2016 Knowledge-Based Systems 96 120
[30] Črepinšek M, Liu S H and Mernik M 2013 ACM Computing Surveys (CSUR) 45 35
[1] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[2] Modelling self-sensing of a magnetostrictive actuator based on a terfenol-D rod
Yan Bai-Ping (严柏平), Zhang Cheng-Ming (张成明), Li Li-Yi (李立毅), Tang Zhi-Feng (唐志峰), Lü Fu-Zai (吕福在), Yang Ke-Ji (杨克己). Chin. Phys. B, 2014, 23(12): 127504.
No Suggested Reading articles found!