Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085204    DOI: 10.1088/1674-1056/27/8/085204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation

Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁)
Laboratory of Plasma Propulsion, Harbin Institute of Technology, HIT, Harbin, China
Abstract  Hall thruster has the advantages of simple structure, high specific impulse, high efficiency, and long service life, and so on. It is suitable for spacecraft attitude control, North and South position keeping, and other track tasks. The anode layer Hall thruster is a kind of Hall thruster. The thruster has a longer anode area and a relatively short discharge channel. In this paper, the effect of the channel length on the performance of the anode layer Hall thruster is simulated by the PIC simulation method. The simulation results show that the change of the channel length has significant effect on the plasma parameters, such as potential and plasma density and so on. The ionization region mainly concentrates at the hollow anode outlet position, and can gradually move toward the channel outlet as the channel length decreases. The collision between the ions and the wall increases with the channel length increasing. So the proper shortening of the channel length can increase the life of the thruster. Besides, the results show that there is a best choice of the channel length for obtaining the best performance. In this paper, thruster has the best performance under a channel length of 5 mm.
Keywords:  anode layer Hall thruster      channel length      potential  
Received:  22 March 2018      Revised:  23 April 2018      Accepted manuscript online: 
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.65.-y (Plasma simulation)  
  52.65.Pp (Monte Carlo methods)  
  52.65.Rr (Particle-in-cell method)  
Corresponding Authors:  Hui Liu, Zhong-Xi Ning     E-mail:  thruster@126.com;ningzx@hit.edu.cn

Cite this article: 

Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁) Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation 2018 Chin. Phys. B 27 085204

[1] Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
[2] Boeuf J P 2017 J. Appl. Phys. 121 011101
[3] Kim H, Choe W, Lim Y, Lee S and Park S 2017 Appl. Phys. Lett. 110 114101
[4] Yu D R, Qing S W, Wang X G, Ding Y J and Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese)
[5] Duan P, Qin H J, Zhou X W, Cao A N, Chen L and Gao H 2014 Chin. Phys. B 23 075203
[6] Goebel D M, Hofer R R, Mikellides I G, Katz I, Polk J E and Dotson B 2015 IEEE Trans. Plasma Sci. 43 118
[7] Yuge S and Tahara H 2005 The 29th International Electric Propulsion Conference, October 31-November 4, 2005, Princeton, USA, IEPC-2005-020
[8] Wei L Q, Han L, Yu D R and Guo N 2015 Chin. Phys. B 24 055201
[9] Komurasaki K, Mikami K and Kusamoto D 1996 The 32nd Aiaa/sae/asee Joint Propulsion Conference, July 1-3, 1996, Florida, USA, AIAA-96-3194
[10] Ding Y, Jia B Y, Sun H Z, Wei L Q, Peng W J, Li P and Yu D R 2018 Adv. Space Res. 61 837
[11] Yuge S, Kuwamura Y and Tahara H 2007 The 30th International Electric Propulsion Conference, September, 17-20 2007, Florence, Italy, IEPC-2007-336
[12] Kubota K, Oshio Y, Watanabe H, Cho S, Ohkawa Y and Funaki I 2016 The 52nd Aiaa/sae/asee Joint Propulsion Conference, July 25-27, 2016, Utah, USA, AIAA-2016-4628
[13] Mikellides I G, Katz I, Goebel D M and Jameson K K 2007 J. Appl. Phys. 101 063301
[14] Katz I, Anderson J R, Polk J E and Brophy J R 2003 J. Propul. Power 19 595
[15] Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H and Komurasaki K 2014 Vacuum 110 159
[16] Yokata S, Komurasaki K and Arakawa Y 2006 The 42nd Aiaa/sae/asee Joint Propulsion Conference, August 21-24, 2006, Colorado, USA, AIAA-2006-5170
[17] Liu H, Yu D R, Yan G J and Liu J Y 2008 Contrib. Plasma Phys. 48 603
[18] Liang S T, Liu H and Yu D R 2018 Chin. Phys. B 27 045201
[19] Liu H, Chen P B, Sun Q Q, Hu P, Meng Y C, Mao W and Yu D R 2016 Acta Astronaut. 126 35
[20] Yu D, Li H, Wu Z and Mao W 2007 Phys. Plasmas 14 064505
[21] Cao X F, Hang G R, Liu H and Yu D R 2017 Plasma Sci. Technol. 19 105501
[22] Fox J M 2007 “Advances in fully-kinetic PIC simulations of a near-vacuum Hall thruster and other plasma systems”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[23] Fife J M 1999 “Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[24] Parra F I, Ahedo E, Fife J M and Martínezsánchez M 2006 J. Appl. Phys. 100 023304
[25] Szabo J J 2001 “Fully kinetic numerical modeling of a plasma thruster”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[26] Zhao Y J, Liu H, Yu D R, Hu P and Wu H 2014 J. Phys. D: Appl. Phys. 47 045201
[27] Liu H, Cheng P B, Zhao Y J and Yu D R 2015 Chin. Phys. B 24 085202
[28] Yuge S, Hara K, Cho S, Takahashi D, Komurasaki K and Arkawa Y 2009 The 31$th International Electric Propulsion Conference, September 20-24, 2009, Michigan, USA, IEPC-2009-149
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[7] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[8] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[13] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[14] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[15] Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043401.
No Suggested Reading articles found!