Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085205    DOI: 10.1088/1674-1056/27/8/085205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure

Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an, China
Abstract  The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode distance, and duty cycle on the discharge are studied. When pressure reaches 60 Torr (1 Torr=1.33322×102 Pa) the transition from diffuse glow mode to constricted mode occurs. With the operating pressure varying from 10 Torr to 60 Torr, the discharge energy calculated from the charge-voltage (Q-V) Lissajous figure decreases rapidly, while it remains unchanged between 60 Torr and 460 Torr. Under certain experimental conditions, there exists an optimized electrode distance (8 mm). As the duty cycle of applied voltage increases, the voltage-current waveforms and Q-V Lissajous figures show no distinct changes.
Keywords:  radio frequency discharge      charge-voltage Lissajous figure      temperature distribution      plasma actuation  
Received:  23 February 2018      Revised:  11 April 2018      Accepted manuscript online: 
PACS:  52.80.-s (Electric discharges)  
  51.50.+v (Electrical properties)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.80.Vp (Discharge in vacuum)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51407197, and 51507187).
Corresponding Authors:  Hui-Min Song     E-mail:  min_cargi@sina.com

Cite this article: 

Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康) Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure 2018 Chin. Phys. B 27 085205

[1] Jaeyoung Park, Henins I, Herrmann H W, Selwyn G S and Hicks R F 2001 J. Appl. Phys. 89 20
[2] Wu Yun and Li Yinghong 2015 Hangkong Xuebao/acta Aeronautica Astronautica Sin. 36 381
[3] Smith H B, Charles C and Boswell R W 2003 Phys. Plasmas 10 875
[4] Leonov S, Bityurin Valentin and Kolesnichenko Y 2001 39th AIAA Aerosp. Sci. Meeting & Exhibit, 8-11 January, 2001, Reno, USA, 111 12620
[5] Leonov S and Yarantsev D A 2008 J. Propul. Power 24 1168
[6] Klimov A, Bitiurin V, Moralev I, Tolkunov B, Zhirnov K and Kutlaliev V 2008 46th AIAA Aerosp. Sci. Meeting Exhibit, 7-10 January, 2008, Reno, USA, p. 1386
[7] Dedrick J, Boswell R W, Audier P, Rabat H, Hong D and Charles C 2011 J. Phys. D: Appl. Phys. 44 205202
[8] Dedrick J, Boswell R W, Rabat H, Hong D and Charles C 2012 Plasma Sources Sci. Technol. 21 055016
[9] Borghi A, Andrea Cristofolini, Chiara Latini and Gabriele Neretti 2010 41st Plasmadynamics and Lasers Conference, June 28-July 1, 2010, Chicago, USA, p. 4763
[10] Dong B, Bauchire J M, Pouvesle J M, Magnier P and Hong D 2008 J. Phys. D: Appl. Phys. 41 155201
[11] Joussot Romain, Lago Viviana, Parisse Jean Denis 2015 Exp. Fluids 56 102
[12] Rakshit Tirumala, Nicolas Benard, Eric Moreau, Matthieu Fenot, Gildas Lalizel and Eva Dorignac 2014 J. Phys. D: Appl. Phys. 47 255203
[13] Wang W L, Song H M, Li J, Jin D, Jia M and Wu Y 2017 Chin. Phys. B 26 015205
[14] Wang W L, Song H M, Li J, Jin D, Jia M and Wu Y 2017 21st AIAA Int. Space Planes Hypersonics Technol. Conference, 6-9 March, 2017, Xiamen, China, p. 2283
[15] Song H M, Jia M, Jin D, Cui W and Wu Y 2016 Chin. Phys. B 25 035204
[16] Gao L, Zhang B L, Li Y W, Duan C D and Wang Y T 2016 Plasma Sci. Technol. 18 855
[17] Liu Y X, Ihor Korolov, Edmund Schungel, Wang Y N, Żoltan Donkó and Julian Schulze 2017 Phys. Plasmas 24 275001
[18] Jichul Shin 2007 “A Study Direct-Curr. Surf. Discharge Plasma For A Mach 3 supersonic flow control” Ph. D. Dissertation (The University of Texas at Austin)
[19] Jichul Shin, Narayanaswamy V, Raja L and Clemens T 2007 AIAA J. 45 1596
[20] Jiang Hui, Shao Tao, Zhang Cheng, Li Wenfeng, Yan Ping 2013 IEEE Trans. Dielectrics Electr. Insulation 20 1101
[21] Zhang Yu Tao 2007 “A study on improving the homogeneity and stability of atmospheric pressure air plasma”, Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[22] Wang W L, Song H M, Li J, Jia M, Wu Y and Jin D 2016 Chin. Phys. B 25 045203
[23] Léger L, Depussay E and Lago V 2009 IEEE Trans. Dielectrics Electr. Insulation 16 396
[24] Joussot R, Hong D, Rabat H, Boucinha V, Weber-Rozenbaum R and Leroy-Chesneau A 2010 40th AIAA Fluid Dyn. Conference Exhibit, 28 June-1 July, 2010, Chicago, USA, p. 5102
[25] Stanfield A, James Menart, Joseph Shang, Kimmel L and Hayes R 2006 44th AIAA Aerosp. Sci. Meeting Exhibit, 9-12 January, 2006, Reno, USA, p. 0559
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[4] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[5] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[6] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[7] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[8] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[9] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[10] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[11] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) . Chin. Phys. B, 2011, 20(10): 100201.
[12] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
[13] Simulation study on reconstruction model of three-dimensional temperature distribution within visible range in furnace
Liu Dong(刘冬), Wang Fei(王飞), Huang Qun-Xing(黄群星), Yan Jian-Hua(严建华), Chi Yong(池涌), and Cen Ke-Fa(岑可法). Chin. Phys. B, 2008, 17(4): 1312-1317.
[14] Calculation of the heat deposition and temperature distribution of the target bombarded by high-energy protons using Monte Carlo simulation and finite element method
Yin Wen (殷雯), Zhang Guo-Feng (张国锋), Du Jian-Hong (杜建红), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2003, 12(12): 1383-1385.
No Suggested Reading articles found!