1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100084, China; 4 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Debye-screening effects on the electron-impact excitation (EIE) processes for the dipole-allowed transition 1ss2p P in He-like Al and Fe ions are investigated using the fully relativistic distorted-wave methods with the-Hückel (DH) model potential. Debye-screening effects on the continuum-bound (CB) interaction and target ion are discussed, both of which result in reduction of EIE cross sections. This reduction due to screening on the CB interaction is dominant. The non-spherical and spherical DH potentials are adopted for considering the screening effect on the CB interaction. It is found that the spherical DH potential could significantly overestimate the influence of plasma screening on EIE cross sections for multielectron He-like ions.
Fund: Project supported by the Science Challenge Project (Grant No. TZ2016001), the National Key Research and Development Program of China (Grants Nos. 2017YFA0403200 and 2017YFA0402300), the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the National Natural Science Foundation of China (Grants Nos. 11774037 and 12064041).
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国) Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions 2022 Chin. Phys. B 31 043401
[1] Heeter R F, Hansen S B, Fournier K B, Foord M E, Froula D H, Mackinnon A J, May M J, Schneider M B and Young B K F 2007 Phys. Rev. Lett. 99 195001 [2] Gao C, Jin F, Zeng J and Yuan J 2013 New J. Phys. 15 015022 [3] Chintan S, Pedro A, René S, Sven B, José R C L U and Stanislav T 2018 Astrophys. J. Suppl. Ser. 234 27 [4] Shah C, Amaro P, Steinbrügge R, Beilmann C, Bernitt S, Fritzsche S, Surzhykov A, Crespo López-Urrutia J R and Tashenov S 2016 Phys. Rev. E93 061201 [5] Belkhiri M and Poirier M 2014 Phys. Rev. A90 062712 [6] Ichimaru S 1982 Rev. Mod. Phys. 54 1017 [7] Whitten B L, Lane N F and Weisheit J C 1984 Phys. Rev. A29 945 [8] Belkhiri M and Fontes C J 2016 J. Phys. B49 175002 [9] Zhang D H, Xie L Y, Jiang J and Dong C Z 2019 Chin. Phys. Lett. 36 083401 [10] Weisheit J C 1989 Adv. At. Mol. Phys. 25 101 [11] Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1 [12] Janev R K, Zhang S and Wang J 2016 Matter Radiat. Extremes1 237 [13] Yoon J S and Jung Y D 1996 Phys. Plasmas3 3291 [14] Ma J, Wang Y C, Zhou Y J and Wang H 2018 Chin. Phys. B27 013401 [15] Zhang S B, Qi Y Y, Qu Y Z, Chen X J and Wang J G 2010 Chin. Phys. Lett. 27 013401 [16] Hatton G J, Lane N F and Weisheit J C 1981 J. Phys. B14 4879 [17] Scheibner K, Weisheit J C and Lane N F 1987 Phys. Rev. A35 1252 [18] Li B W, Dong C Z, Jiang J and Wang J G 2010 Eur. Phys. J. D59 201 [19] Jiang J, Dong C Z and Xie L Y 2014 Chin. Phys. Lett. 31 023401 [20] Chen Z B, Dong C Z, Jiang J and Xie L Y 2015 J. Phys. B48 144030 [21] Chen Z 2018 Phys. Plasmas25 052105 [22] Qi Y Y, Ye D D, Wang J G and Qu Y Z 2015 Chin. Phys. B24 033403 [23] Pindzola M S, Loch S D, Colgan J and Fontes C J 2008 Phys. Rev. A77 062707 [24] Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. Lett. 104 023203 [25] Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. A81 032707 [26] Zhang S B, Wang J G, Janev R K and Chen X J 2011 Phys. Rev. A83 032724 [27] Zammit M C, Fursa D V and Bray I 2010 Phys. Rev. A82 052705 [28] Zammit M C, Fursa D V and Bray I 2012 Chem. Phys. 398 214 [29] Zammit M C, Fursa D V, Bray I and Janev R K 2011 Phys. Rev. A84 052705 [30] Zhou F Y, Qu Y Z, Gao J W, Ma Y L, Wu Y and Wang J G 2021 Commun. Phys. 4 148 [31] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A and Froula D H 2010 Phys. Rev. E95 063204 [32] Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys. Rev. A78 022709 [33] Zhang H L, Sampson D H and Clark R E H 1990 Phys. Rev. A41 198 [34] Bar-Shalom A, Klapisch M and Oreg J 1988 Phys. Rev. A38 1773 [35] Xie L Y, Wang J G, Janev R K, Qu Y Z and Dong C Z 2012 Eur. Phys. J. D66 125 [36] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425 [37] Jönsson P, He X, Froese Fischer C and Grant I P 2007 Comput. Phys. Commun. 177 597 [38] Saha B and Fritzsche S 2006 Phys. Rev. E73 036405 [39] Fritzsche S, Aksela H, Dong C Z, Heinäsmäki S and Sienkiewicz J E 2003 Nucl. Instrum. Methods Phys. Res. B205 93 [40] Ong W and Russek A 1978 Phys. Rev. A17 120 [41] Chang T N and Fang T K 2013 Phys. Rev. A88 023406 [42] Qi Y Y, Wang J G and Janev R K 2009 Phys. Rev. A80 063404 [43] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8), May 28, 2021, National Institute of Standards and Technology, Gaithersburg, MD [44] Kieffer J C, Matte J P, Chaker M, Beaudoin Y, Chien C Y, Coe S, Mourou G, Dubau J and Inal M K 1993 Phys. Rev. E48 4648 [45] Hakel P, Mancini R C, Harris C, Neill P, Beiersdorfer P, Csanak G and Zhang H L 2007 Phys. Rev. A76 012716
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.