PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Properties of long light filaments in natural environment |
Shi-You Chen(陈式有)1,2, Hao Teng(滕浩)1,2, Xin Lu(鲁欣)1,2, Zong-Wei Shen(沈忠伟)1,5, Shuang Qin(秦爽)1,2, Wen-Shou Wei(魏文寿)3, Rong-Yi Chen(陈荣毅)3, Li-Ming Chen(陈黎明)1,2,4, Yu-Tong Li(李玉同)1,2,4, Zhi-Yi Wei(魏志义)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sicences, Beijing 100049, China;
3 Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
5 School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China |
|
|
Abstract The multiple filamentation of terawatt femtosecond (fs) laser pulses is experimentally studied in a natural environment. A more than 30-m long plasma filament with a millimeter diameter is formed by the collimated fs laser pulse freely propagating in an open atmosphere. This study provides the first quantitative experimental data about the electron density of a long range light filament in the atmosphere. The electron density of such a filament is quantitatively detected by using an electric method, showing that it is at the 1011-cm-3 level.
|
Received: 30 March 2018
Revised: 14 May 2018
Accepted manuscript online:
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574387, 11404335, 11474002, and 11535001), the National Basic Research Program of China (Grant Nos. 2013CBA01501 and 2013CB922401), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants Nos. XDB16010200 and XDB07030300), and the Science Challenge Project, China (Grant No. TZ2016005). |
Corresponding Authors:
Xin Lu, Zhi-Yi Wei
E-mail: luxin@iphy.ac.cn;wzhy@iphy.ac.cn
|
Cite this article:
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义) Properties of long light filaments in natural environment 2018 Chin. Phys. B 27 085203
|
[1] |
Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73
|
[2] |
Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G and Schroeder H 2005 Can. J. Phys. 83 863
|
[3] |
Berge L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
|
[4] |
Béjot P, Kasparian J, Henin S, Loriot V, Vieillard T, Hertz E, Faucher O, Lavorel B and Wolf J P 2010 Phys. Rev. Lett. 104 103903
|
[5] |
Li S Y, Guo F M, Yang Y J and Jin M X 2015 Chin. Phys. B 24 104205
|
[6] |
Ball L M 1974 Appl. Opt. 13 2292
|
[7] |
Rodriguez M, Sauerbrey R, Wille H, Wöste L, Fujii T, André Y B, Mysyrowicz A, Klingbeil L, Rethmeier K, Kalkner W, Kasparian J, Salmon E, Yu J and Wolf J P 2002 Opt. Lett. 27 772
|
[8] |
Kasparian J, Ackermann R, André Y B, Méchain G, Méjean G, Prade B, Rohwetter P, Salmon E, Stelmaszczyk K, Yu J, Mysyrowicz A, Sauerbrey R, Wöste L and Wolf J P 2008 Opt. Express 16 5757
|
[9] |
Zhang Z, Lu X, Liang W X, Hao Z Q, Zhou M L, Wang Z H and Zhang J 2009 Chin. Phys. B 18 1136
|
[10] |
Châteauneuf M, Payeur S, Dubois J and Kieffer J C 2008 Appl. Phys. Lett. 92 091104
|
[11] |
Bogatov N A, Kuznetsov A I, Smirnov A I and Stepanov A N 2009 Quantum Electron. 39 985
|
[12] |
Rohwetter P, Kasparian J, Stelmaszczyk K, Hao Z, Henin S, Lascoux N, Nakaema W M, Petit Y, Queisser M, Salamé R, Salmon E, Wöste L and Wolf J P 2010 Nat. Photon. 4 451
|
[13] |
Ju J J, Liu J S, Wang C, Sun H Y, Wang W T, Ge X C, Li C, Chin S L, Li R X and Xu Z Z 2012 Opt. Lett. 37 1214
|
[14] |
Bergé L, Skupin S, Lederer F, Méjean G, Yu J, Kasparian J, Salmon E, Wolf J P, Rodriguez M, Wöste L, Bourayou R and Sauerbrey R 2004 Phys. Rev. Lett. 92 225002
|
[15] |
Rodriguez M, Bourayou R, Mejean G, Kasparian J, Yu J, Salmon E, Scholz A, Stecklum B, Eisloffel J, Laux U, Hatzes A P, Sauerbrey R, Woste L and Wolf J P 2004 Phys. Rev. E 69 036607
|
[16] |
Mechain G, Couairon A, Andre Y B, D'Amico C, Franco M, Prade B, Tzortzakis S, Mysyrowicz A and Sauerbrey R 2004 Appl. Phys. B 79 379
|
[17] |
Mechain G, D'Amico C, Andre Y B, Tzortzakis S, Franco M, Prade B, Mysyrowicz A, Couairon A, Salmon E and Sauerbrey R 2005 Opt. Commun. 247 171
|
[18] |
Hao Z Q, Zhang J, Zhang Z, Yuan X H, Zheng Z Y, Lu X, Jin Z, Wang Z H, Zhong J Y and Liu Y Q 2006 Phys. Rev. E 74 066402
|
[19] |
Dur, M, Houard A, Prade B, Mysyrowicz A, Durécu A, Moreau, Fleury D, Vasseur O, Borchert H, Diener K, Schmitt R, Théberge F, Chateauneuf M, Daigle J F and Dubois J 2013 Opt. Express 21 26836
|
[20] |
Apeksimov D V, Geints Y E, Zemlyanov A A, Kabanov A M, Matvienko G G, Oshlakov V K 2015 Quantum Electron. 45 408
|
[21] |
Tzortzakis S, Prade B, Franco M and Mysyrowicz A 2000 Opt. Commun. 181 123
|
[22] |
Hao Z Q, Zhang J, Li Y T, Lu X, Yuan X H, Zheng Z Y, Wang Z H, Ling W J and Wei Z Y 2005 Appl. Phys. B 80 627
|
[23] |
Liu X L, Lu X, Ma J L, Feng L B, Ge X L, Zheng Y, Li Y T, Chen L M, Dong Q L, Wang W M, Wang Z H, Teng H, Wei Z Y and Zhang J 2012 Opt. Express 20 5968
|
[24] |
Tzortzakis S, Franco M A, Andre Y B, Chiron A, Lamouroux B, Prade B S and Mysyrowicz A 1999 Phys. Rev. E 60 R3505
|
[25] |
Schillinger H and Sauerbrey R 1999 Appl. Phys. B 68 753
|
[26] |
Ladouceur H D, Baronavski A P, Lohrmann D, Grounds P W and Girardi P G 2001 Opt. Commun. 189 107
|
[27] |
Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2011 Opt. Express 19 16866
|
[28] |
Lu X, Chen S Y, Ma J L, Hou L, Liao G Q, Wang J G, Han Y J, Liu X L, Teng H, Han H N, Li Y T, Chen L M, Wei Z Y and Zhang J 2015 Sci. Rep. 5 15515
|
[29] |
Kandidov V P, Kosareva O G, Tamarov M P, Brodeur A and Chin S L 1999 Quantum Electron. 29 911
|
[30] |
Chin S L, Talebpour A, Yang J, Petit S, Kandidov V P, Kosareva O G and Tamarov M P 2002 Appl. Phys. B 74 67
|
[31] |
Ma Y Y, Lu X, Xi T T, Gong Q H and Zhang J 2008 Opt. Express 16 8332
|
[32] |
Chen S Y, Liu X L, Lu X, Ma J L, Wang J G, Zhu B J, Chen L M and Li Y T 2017 Opt. Express 25 32514
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|