Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085203    DOI: 10.1088/1674-1056/27/8/085203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Properties of long light filaments in natural environment

Shi-You Chen(陈式有)1,2, Hao Teng(滕浩)1,2, Xin Lu(鲁欣)1,2, Zong-Wei Shen(沈忠伟)1,5, Shuang Qin(秦爽)1,2, Wen-Shou Wei(魏文寿)3, Rong-Yi Chen(陈荣毅)3, Li-Ming Chen(陈黎明)1,2,4, Yu-Tong Li(李玉同)1,2,4, Zhi-Yi Wei(魏志义)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sicences, Beijing 100049, China;
3 Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
5 School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China
Abstract  

The multiple filamentation of terawatt femtosecond (fs) laser pulses is experimentally studied in a natural environment. A more than 30-m long plasma filament with a millimeter diameter is formed by the collimated fs laser pulse freely propagating in an open atmosphere. This study provides the first quantitative experimental data about the electron density of a long range light filament in the atmosphere. The electron density of such a filament is quantitatively detected by using an electric method, showing that it is at the 1011-cm-3 level.

Keywords:  laser-plasma interactions      filamentation      propagation  
Received:  30 March 2018      Revised:  14 May 2018      Accepted manuscript online: 
PACS:  52.38.-r (Laser-plasma interactions)  
  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574387, 11404335, 11474002, and 11535001), the National Basic Research Program of China (Grant Nos. 2013CBA01501 and 2013CB922401), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants Nos. XDB16010200 and XDB07030300), and the Science Challenge Project, China (Grant No. TZ2016005).

Corresponding Authors:  Xin Lu, Zhi-Yi Wei     E-mail:  luxin@iphy.ac.cn;wzhy@iphy.ac.cn

Cite this article: 

Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义) Properties of long light filaments in natural environment 2018 Chin. Phys. B 27 085203

[1] Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73
[2] Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G and Schroeder H 2005 Can. J. Phys. 83 863
[3] Berge L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
[4] Béjot P, Kasparian J, Henin S, Loriot V, Vieillard T, Hertz E, Faucher O, Lavorel B and Wolf J P 2010 Phys. Rev. Lett. 104 103903
[5] Li S Y, Guo F M, Yang Y J and Jin M X 2015 Chin. Phys. B 24 104205
[6] Ball L M 1974 Appl. Opt. 13 2292
[7] Rodriguez M, Sauerbrey R, Wille H, Wöste L, Fujii T, André Y B, Mysyrowicz A, Klingbeil L, Rethmeier K, Kalkner W, Kasparian J, Salmon E, Yu J and Wolf J P 2002 Opt. Lett. 27 772
[8] Kasparian J, Ackermann R, André Y B, Méchain G, Méjean G, Prade B, Rohwetter P, Salmon E, Stelmaszczyk K, Yu J, Mysyrowicz A, Sauerbrey R, Wöste L and Wolf J P 2008 Opt. Express 16 5757
[9] Zhang Z, Lu X, Liang W X, Hao Z Q, Zhou M L, Wang Z H and Zhang J 2009 Chin. Phys. B 18 1136
[10] Châteauneuf M, Payeur S, Dubois J and Kieffer J C 2008 Appl. Phys. Lett. 92 091104
[11] Bogatov N A, Kuznetsov A I, Smirnov A I and Stepanov A N 2009 Quantum Electron. 39 985
[12] Rohwetter P, Kasparian J, Stelmaszczyk K, Hao Z, Henin S, Lascoux N, Nakaema W M, Petit Y, Queisser M, Salamé R, Salmon E, Wöste L and Wolf J P 2010 Nat. Photon. 4 451
[13] Ju J J, Liu J S, Wang C, Sun H Y, Wang W T, Ge X C, Li C, Chin S L, Li R X and Xu Z Z 2012 Opt. Lett. 37 1214
[14] Bergé L, Skupin S, Lederer F, Méjean G, Yu J, Kasparian J, Salmon E, Wolf J P, Rodriguez M, Wöste L, Bourayou R and Sauerbrey R 2004 Phys. Rev. Lett. 92 225002
[15] Rodriguez M, Bourayou R, Mejean G, Kasparian J, Yu J, Salmon E, Scholz A, Stecklum B, Eisloffel J, Laux U, Hatzes A P, Sauerbrey R, Woste L and Wolf J P 2004 Phys. Rev. E 69 036607
[16] Mechain G, Couairon A, Andre Y B, D'Amico C, Franco M, Prade B, Tzortzakis S, Mysyrowicz A and Sauerbrey R 2004 Appl. Phys. B 79 379
[17] Mechain G, D'Amico C, Andre Y B, Tzortzakis S, Franco M, Prade B, Mysyrowicz A, Couairon A, Salmon E and Sauerbrey R 2005 Opt. Commun. 247 171
[18] Hao Z Q, Zhang J, Zhang Z, Yuan X H, Zheng Z Y, Lu X, Jin Z, Wang Z H, Zhong J Y and Liu Y Q 2006 Phys. Rev. E 74 066402
[19] Dur, M, Houard A, Prade B, Mysyrowicz A, Durécu A, Moreau, Fleury D, Vasseur O, Borchert H, Diener K, Schmitt R, Théberge F, Chateauneuf M, Daigle J F and Dubois J 2013 Opt. Express 21 26836
[20] Apeksimov D V, Geints Y E, Zemlyanov A A, Kabanov A M, Matvienko G G, Oshlakov V K 2015 Quantum Electron. 45 408
[21] Tzortzakis S, Prade B, Franco M and Mysyrowicz A 2000 Opt. Commun. 181 123
[22] Hao Z Q, Zhang J, Li Y T, Lu X, Yuan X H, Zheng Z Y, Wang Z H, Ling W J and Wei Z Y 2005 Appl. Phys. B 80 627
[23] Liu X L, Lu X, Ma J L, Feng L B, Ge X L, Zheng Y, Li Y T, Chen L M, Dong Q L, Wang W M, Wang Z H, Teng H, Wei Z Y and Zhang J 2012 Opt. Express 20 5968
[24] Tzortzakis S, Franco M A, Andre Y B, Chiron A, Lamouroux B, Prade B S and Mysyrowicz A 1999 Phys. Rev. E 60 R3505
[25] Schillinger H and Sauerbrey R 1999 Appl. Phys. B 68 753
[26] Ladouceur H D, Baronavski A P, Lohrmann D, Grounds P W and Girardi P G 2001 Opt. Commun. 189 107
[27] Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2011 Opt. Express 19 16866
[28] Lu X, Chen S Y, Ma J L, Hou L, Liao G Q, Wang J G, Han Y J, Liu X L, Teng H, Han H N, Li Y T, Chen L M, Wei Z Y and Zhang J 2015 Sci. Rep. 5 15515
[29] Kandidov V P, Kosareva O G, Tamarov M P, Brodeur A and Chin S L 1999 Quantum Electron. 29 911
[30] Chin S L, Talebpour A, Yang J, Petit S, Kandidov V P, Kosareva O G and Tamarov M P 2002 Appl. Phys. B 74 67
[31] Ma Y Y, Lu X, Xi T T, Gong Q H and Zhang J 2008 Opt. Express 16 8332
[32] Chen S Y, Liu X L, Lu X, Ma J L, Wang J G, Zhu B J, Chen L M and Li Y T 2017 Opt. Express 25 32514
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[6] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[7] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[8] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[9] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[10] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[11] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[12] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[13] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[14] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[15] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
No Suggested Reading articles found!