Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083601    DOI: 10.1088/1674-1056/27/8/083601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study

Han-Xing Zhang(张汉星)1,2, Chao-Hao Hu(胡朝浩)1,2, Dian-Hui Wang(王殿辉)1,2, Yan Zhong(钟燕)1,2, Huai-Ying Zhou(周怀营)1,2, Guang-Hui Rao(饶光辉)1,2
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
2 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  Structural, electronic, and magnetic properties of AunGd (n=6-15) small clusters are investigated by using first principles spin polarized calculations and combining with the ab-initio evolutionary structure simulations. The calculated binding energies indicate that after doping a Gd atom AunGd cluster is obviously more stable than a pure Aun+1 cluster. Au6Gd with the quasiplanar structure has a largest magnetic moment of 7.421 μB. The Gd-4f electrons play an important role in determining the high magnetic moments of AunGd clusters, but in Au6Gd and Au12Gd clusters the unignorable spin polarized effects from the Au-6s and Au-5d electrons further enhance their magnetism. The HOMO-LUMO (here, HOMO and LUMO stand for the highest occupied molecular orbital, and the lowest unoccupied molecular orbital, respectively) energy gaps of AunGd clusters are smaller than those of pure Aun+1 clusters, indicating that AunGd clusters have potential as new catalysts with enhanced reactivity.
Keywords:  AunGd clusters      structural evolution      first-principles calculations      electronic structure      magnetic property  
Received:  31 January 2018      Revised:  17 April 2018      Accepted manuscript online: 
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB643703), the National Natural Science Foundation of China (Grant Nos. 11464008 and 51401060), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFGA118001 and 2016GXNSFGA380001), and the Guangxi Provincial Key Laboratory of Information Materials (Grant Nos. 1210908-215-Z and 131022-Z).
Corresponding Authors:  Chao-Hao Hu     E-mail:  chaohao.hu@guet.edu.cn

Cite this article: 

Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉) Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study 2018 Chin. Phys. B 27 083601

[1] Hammer B and Nørskov J K 1995 Nature 376 238
[2] Sun K J, Kohyama M, Tanaka S and Takeda S 2015 J. Energy Chem. 24 485
[3] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J and Delmon B 1993 J. Catal. 144 175
[4] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[5] Lim Y T, Cho M Y, Choi B S, Lee J M and Chung B H 2008 Chem. Commun. 49 30
[6] Wang J, Liu J, Liu Y, Wang L M, Cao M J, Ji Y L, Wu X C, Xu Y Y, Bai B, Miao Q, Chen C Y and Zhao Y L 2016 Adv. Mater. 28 8950
[7] Gao Y, Wang B, Lei Y Y, Teo B K and Wang Z G 2016 Nano Res. 9 622
[8] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S and Hirai T 2012 J. Am. Chem. Soc. 134 6309
[9] Haruta M 1997 Catal. Today 36 153
[10] Hughes M D, Xu Y J, Jenkins P, McMorn P, Landon P, Enache D I, Carley A F, Attard G A, Hutchings G J, King F, Stitt E H, Johnston P, Griffin K and Kiely CJ 2005 Nature 437 1132
[11] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N and Ribeiro F H 2012 J. Am. Chem. Soc. 134 4700
[12] Nakaso K, Shimada M, Okuyama K and Deppert K 2002 J. Aerosol Sci. 33 1061
[13] Arcidiacono S, Bieri N R, Poulikakos D and Grigoropoulos C P 2004 Int. J. Multiphase Flow 30 979
[14] Han M Y, Gao X H, Su J Z and Nie S 2001 Nat. Biotechnol. 19 631
[15] Vilhelmsen L B, Walton K S and Sholl D S 2012 J. Am. Chem. Soc. 134 12807
[16] Piotrowski M J, Piquini P and Da Silva JLF 2010 Phys. Rev. B 81 155446
[17] Yang A P, Fa W and Dong J M 2010 J. Phys. Chem. A 114 4031
[18] Yang H W, Lu W C, Zhao L Z, Qin W, Yang W H and Xue X Y 2013 J. Phys. Chem. A 117 2672
[19] Hu C H, Chizallet C, Toulhoat H and Raybaud P 2009 Phys. Rev. B 79 195416
[20] Zorriasatein S, Joshi K and Kanhere D G 2008 J. Chem. Phys. 128 184314
[21] Chen M X and Yan X H 2008 J. Chem. Phys. 128 174305
[22] Rodríguez-Kesser P L and Rodríguez-Domínguez A R 2015 Comput. Theor. Chem. 1066 55
[23] Yadav B D and Kumar V 2010 Appl. Phys. Lett. 97 133701
[24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[25] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[26] Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych OO and Solozhenko V L 2009 Nature 457 863
[27] Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O and Zhou H Y 2013 Phys. Rev. Lett. 110 165504
[28] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T 2014 Phys. Rev. Lett. 112 085502
[29] Bhattacharya S, Sonin B H, Jumonville C J, Ghiringhelli L M and Maron N 2015 Phys. Rev. B 91 241115
[30] Blochl P E 1994 Phys. Rev B 50 17953
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Assadollahzadeh B and Schwerdtfeger P 2009 J. Chem. Phys. 131 064306
[34] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[35] Gao Y, Chen L, Dai X, Song R X, Wang B and Wang Z G 2015 RSC Adv. 5 32198
[36] Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Phys. Rev. B 70 165403
[37] Gao Y and Wang Z G 2016 Chin. Phys. B 25 083102
[38] Tuboltsev V, Savin A, Pirojenko A and Räisänen J 2013 ACS Nano 7 6691
[39] Li C Y, Wu C M, Karna S K, Wang C W, Hsu D, Wang C J and Li W H 2011 Phys. Rev. B 83 174446
[40] Die D, Zheng B X, Zhao L Q, Zhu Q W and Zhao Z Q 6 Sci. Rep. 6 31978
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[12] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!