Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107506    DOI: 10.1088/1674-1056/ac04a8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interaction region of magnon-mediated spin torques and novel magnetic states

Zai-Dong Li(李再东)1,2,3,†, Qi-Qi Guo(郭奇奇)1, Yong Guo(郭永)4, Peng-Bin He(贺鹏斌)5, and Wu-Ming Liu(刘伍明)6
1 Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
3 School of Science, Tianjin University of Technology, Tianjin 300384, China;
4 Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
5 School of Physics and Electronics, Hunan University, Changsha 410082, China;
6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  We determine the region in which the magnon-mediated spin torques exist. This region can be controlled by the spin waves. In terms of stability analysis of magnetization dynamics based on the spin-wave background, we obtain the instability conditions of spin waves. With these results, we find the relationship between unstable regions and the formation of Akhmediev breather, Kuznetsov-Ma breather and rogue waves. We establish the phase diagram of some novel magnetic excitaions.
Keywords:  magnon-mediated spin torque      instability      breather      phase diagram  
Received:  15 April 2021      Revised:  15 April 2021      Accepted manuscript online:  25 May 2021
PACS:  75.78.-n (Magnetization dynamics)  
  75.40.Gb (Dynamic properties?)  
  72.25.Ba (Spin polarized transport in metals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774001), the Natural Science Foundation of Hebei Province of China (Grant No. F2019202141), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. KF201906).
Corresponding Authors:  Zai-Dong Li     E-mail:  lizd@email.tjut.edu.cn

Cite this article: 

Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明) Interaction region of magnon-mediated spin torques and novel magnetic states 2021 Chin. Phys. B 30 107506

[1] Kosevich A M, Ivanov B A and Kovalev A S 1990 Phys. Rep. 194 117
[2] Mikeska H J and Steiner M 1991 Adv. Phys. 40 191
[3] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[4] Slonczewski J C and Magn J 1996 Magn. Mater. 159 L1
[5] Berger L 1996 Phys. Rev. B 54 9353
[6] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
[7] Li Z D, Liang J Q, Li L and Liu W M 2004 Phys. Rev. E 69 066611
[8] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[9] Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
[10] Li Z D, Li Q Y, Wang X R, Liu W M and Liang J Q 2010 J. Phys.: Condens. Matter. 22 216001
[11] Wang W W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203
[12] Li Z D, Cui H, Li Q Y and He P B 2018 Annals. Phys. 388 390
[13] Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Annals. Phys. 327 2085
[14] Parkin S S P, Hayashi M and Thomas L 2008 Science 302 190
[15] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1866
[16] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[17] Hinzke D and Nowak U 2011 Phys. Rev. Lett. 107 027205
[18] Jiang X, Thomas L, Moriya R, Hayashi M, Bergman B, Rettner C and Parkin S S P 2010 Nat. Commun. 1 25
[19] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[20] Edelstein V M 1990 Solid. State. Commun. 73 233
[21] Chernyshov A, Overby M, Liu X, Furdyna J, Lyandageller Y and Rokhinson L P 2009 Nat. Phys. 5 656
[22] Ando K, Takahashi S, Harii K, Sasage K, Ieda J and Maekawa S 2008 Phys. Rev. Lett. 101 036601
[23] Liu L Q, Moriyama T, Ralph D C and uhrman R A 2011 Phys. Rev. Lett. 106 036601
[24] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V and Auffret S 2011 Nature 476 189
[25] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[26] Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
[27] Swaving A C and Duine R A 2011 Phys. Rev. B 83 054428
[28] Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601
[29] Moon J H, Seo S M, Kim K W, Ryu J, Lee H W, McMichael R D and Stiles M D 2013 Phys. Rev. B 88 184404
[30] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[31] Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K von, Kubetzka A and Wiesendanger R 2013 Science 341 636
[32] Bu K M, Kwon H Y, Kang S P, Kim H J and Won C 2013 J. Magn. Magn. Mater. 343 32
[33] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[34] Moriya T 1960 Phys. Rev. 120 91
[35] Heinze S, Bergmann K V, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[36] Chen G, Zhu J, Quesada A, Li J, N’Diaye A T, Huo Y, Ma T P, Chen Y, Kwon H Y, Won C, Qiu Z Q, Schmid A K and Wu Y Z 2013 Phys. Rev. Lett. 110 177204
[37] Ryu K S, Thomas L, Yang S H and Parkin S S P 2013 Nature Nanotechnol. 8 527
[38] Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G and Xiang H J 2012 Rev. Lett. 109 107203
[39] Pfleiderer C, Julian S R and Lonzarich G G 2001 Nature 414 427
[40] Leyraudet N D, Walker I R, Taillefer L, Steiner M J, Julian S R and Lonzarich G G 2003 Nature 425 595
[41] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
[42] Meckler S, Mikuszeit N, PreBer A, Vedmedenko E Y, Pietzsch O and Wiesendanger R 2009 Phys. Rev. Lett. 103 157201
[43] Bass J and Pratt W P 2007 J. Phys. Condens. Matter 19 183201
[44] Chumak A, Vasyuchka V, Serga A and Hillebrands B 2015 Nat. Phys. 11 453
[45] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K and Mizuguchi M 2010 Nature 464 262
[46] Cornelissen L, Liu J, Duine R, Youssef J B and Wees B Van 2015 Nat. Phys. 11 1022
[47] Yuan W, Zhu Q, Su T, Yao Y Y, Xing W Y and Chen Y Y 2018 Sci. Adv. 4 1098
[48] Lebrun R 2018 Nature 561 222
[49] Slonczewski J C 2010 Phys. Rev. B 82 054403
[50] Han D S, Kim S K, Lee J Y, Hermsdoerfer S J, Schultheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502
[51] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[52] Hinzke D and Nowak U 2011 Phys. Rev. Lett. 107 027205
[53] Kovalev A A and Tserkovnyak Y 2012 Euro. Phys. Lett. 97 67002
[54] Jiang W 2013 Phys. Rev. Lett. 110 177202
[55] Moriyama T, Takei S, Nagata M, Yoshimura Y, Matsuzaki N and Terashima T 2015 Appl. Phys. Lett. 106 162406
[56] Woo S, Delaney T and Beach G S 2017 Nat. Phys. 13 448
[57] Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J and Yang H 2019 Science 366 1125
[58] Hansson T, Modotto D and Wabnitz S 2013 Phys. Rev. A 88 023819
[59] Li Z D, Li Q Y, Xu T F and He P B 2016 Phys. Rev. E 94 042220
[60] Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[61] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[62] Toenger S, Genty G, Dias F, Erkintalo M and Dud-ley J M 2015 Sci. Rep. 5 10380
[63] Zhao L C and Ling L 2016 J. Opt. Soc. Am. B 33 850
[64] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
[65] Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[66] Li Q Y, Xie Z W, Li Lu, Li Z D and Liang J Q 2004 Ann. Phys. 312 128
[67] Li Z D, Li Q Y, He P B, Bai Z G and Sun Y B 2007 Ann. Phys. 322 2945
[68] Zheng Z X, Li Q Y, Li Z D, Wang S X, Xu L P and Wen T D 2009 Physics 324 1612
[69] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[70] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express. 17 21497
[71] Kuznetsov E 1977 Sov. Phys. Dokl. 22 507
[72] Ma Y C 1979 Stud. Appl. Math. 60 43
[73] Kibler B, Fatome J, Fnot C, Millot G and Genty G 2012 Sci. Rep. 2 463
[74] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[75] Kibler B, Fatome J, Finot C and Millot G 2010 Nature Phys. 6 790
[76] Takhtajan L A 1977 Phys. Lett. 64 235
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[7] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[8] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[9] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[10] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[11] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[12] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[13] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[14] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[15] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
No Suggested Reading articles found!