Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067503    DOI: 10.1088/1674-1056/27/6/067503
RAPID COMMUNICATION Prev   Next  

Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials

Bo Zhang(张博)1,2, Xin-Qi Zheng(郑新奇)3, Tong-Yun Zhao(赵同云)1,2, Feng-Xia Hu(胡凤霞)1,2, Ji-Rong Sun(孙继荣)1,2, Bao-Gen Shen(沈保根)1,2
1 State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China;
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on composition design for La(Fe,Si/Al)13-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three prediction models are built by using a machine learning algorithm called gradient boosting regression tree (GBRT) to essentially find the correlation between the Curie temperature (TC), maximum value of magnetic entropy change ((Δ SM)max), and chemical composition, all of which yield high accuracy in the prediction of TC and (Δ SM)max. The performance metric coefficient scores of determination (R2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition for further magnetic refrigeration applications.

Keywords:  La(Fe,Si/Al)13-based materials      composition design      machine learning      magnetic refrigeration  
Received:  19 March 2018      Revised:  04 May 2018      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.20.En (Metals and alloys)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No.2014CB643702),the National Natural Science Foundation of China (Grant No.51590880),the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No.KJZD-EW-M05),and the National Key Research and Development Program of China (Grant No.2016YFB0700903).

Corresponding Authors:  Bao-Gen Shen     E-mail:  shenbg@iphy.ac.cn

Cite this article: 

Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials 2018 Chin. Phys. B 27 067503

[1] Duc N H and Anh D T K 2002 J. Magn. Magn. Mater. 242 873
[2] Giguere A, Foldeaki M, Schnelle W and Gmelin E 1999 J. Phys:Condens. Matter 11 6969
[3] Zheng X Q, Zhang B, Wu H, Hu F X, Huang Q Z and Shen B G 2016 J. Appl. Phys. 120 163907
[4] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[5] Giguére A, Foldeaki M, Ravi G B, Chahine R, Bose T K, Frydman A and Barclay J A 1999 Phys. Rev. Lett. 83 2262
[6] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[7] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[8] Hu F X, Shen B G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
[9] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[10] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[11] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[12] Balli M, Fruchart D and Gignoux D 2007 J. Phys. Condens. Matter 19 236230
[13] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S and Zimm C 2011 IEEE Trans. Magn. 47 3391
[14] Fujieda S, Fujita A and Fukamichi K 2005 IEEE Trans. Magn. 41 2787
[15] Fujieda S, Fujita A and Fukamichi K 2007 J. Appl. Phys. 102 023907
[16] Shen J, Li Y X, Zhang J, Gao B, Hu F X, Zhang H W, Chen Y Z, Rong C B and Sun J R 2008 J. Appl. Phys. 103 07B317
[17] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[18] Zhang H, Shen J, Xu Z Y, Zheng X Q, Hu F X, Sun J R and Shen B G 2012 J. Magn. Magn. Mater. 324 484
[19] Chen X A, Chen Y G and Tang Y B 2011 J. Alloys Compd. 509 2864
[20] Nosengo N 2016 Nature 533 23
[21] Meredig B, Agrawal A, Kirklin S, Saal J E, Doak J W, Thompson A, Zhang K, Choudhary A and Wolverton C 2014 Phys. Rev. B 89 094429
[22] Oliynyk A O, Antono E, Sparks T D, Ghadbeigi L, Gaultois M W, Meredig B and Mar A 2016 Chem. Mater. 28 7324
[23] Xue D, Balachandran P V, Hogden J, Theiler J, Xue D and Lookman T 2016 Nat. Commun. 7 11241
[24] Owolabi T O, Akande K O, Olatunji S O, Alqahtani A and Aldhafferi N 2016 AIP Adv. 6 105009
[25] Friedman J H 2001 Ann. Stat. 29 1189
[26] Franco V, Blázquez J S, Iplus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater. Sci. 93 112
[27] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[10] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[13] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[14] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[15] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
No Suggested Reading articles found!
    PDF Preview