Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036201    DOI: 10.1088/1674-1056/24/3/036201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Flexural wave band-gaps in phononic metamaterial beam with hybrid shunting circuits

Zhang Hao (张浩), Wen Ji-Hong (温激鸿), Chen Sheng-Bing (陈圣兵), Wang Gang (王刚), Wen Xi-Sen (温熙森)
Vibration and Acoustics Research Group, Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China
Abstract  Periodic arrays of hybrid-shunted piezoelectric patches are used to control the band-gaps of phononic metamaterial beams. Passive resistive-inductive (RL) shunting circuits can produce a narrow resonant band-gap (RG), and active negative capacitive (NC) shunting circuits can broaden the Bragg band-gaps (BGs). In this article, active NC shunting circuits and passive resonant RL shunting circuits are connected to the same piezoelectric patches in parallel, which are usually called hybrid shunting circuits, to control the location and the extent of the band-gaps. A super-wide coupled band-gap is generated when the coupling between RG and the BG occurs. The attenuation constant of the infinite periodic structure is predicted by the transfer matrix method, which is compared with the vibration transmittance of a finite periodic structure calculated by the finite element method. Numerical results show that the hybrid-shunting circuits can make the band-gaps wider by appropriately selecting the inductances, negative capacitances, and resistances.
Keywords:  phononic metamaterial      band-gap      hybrid shunting circuits      flexural wave  
Received:  04 June 2014      Revised:  21 September 2014      Accepted manuscript online: 
PACS:  62.30.+d (Mechanical and elastic waves; vibrations)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275519 and 51175501).
Corresponding Authors:  Wen Ji-Hong     E-mail:  wenjihong_nudt1@vip.sina.com

Cite this article: 

Zhang Hao (张浩), Wen Ji-Hong (温激鸿), Chen Sheng-Bing (陈圣兵), Wang Gang (王刚), Wen Xi-Sen (温熙森) Flexural wave band-gaps in phononic metamaterial beam with hybrid shunting circuits 2015 Chin. Phys. B 24 036201

[1] Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z and Han X Y 2009 Phononic Crystals (1st edn.) (Beijing: National Defense Industry Press)
[2] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[3] Sigalas M, Kushwaha M S, Economou E N, Kafesaki M, Psarobas I E and Steurer W 2005 Z. Kristallogr. 220 765
[4] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[5] Vasseur J O, Deymier P A, Chenni B, Djafari-Rouhani B, Dobrzynski L and Prevost D 2001 Phys. Rev. Lett. 86 3012
[6] Wang G, Wen X S, Wen J H, Shao L H and Liu Y Z 2004 Phys. Rev. Lett. 93 154302
[7] Yu D L, Liu Y Z, Zhao H G, Wang G and Qiu J 2006 Phys. Rev. B 73 64301
[8] Wen J H, Yu D L, Liu J W, Xiao Y and Wen X S 2009 Chin. Phys. B 18 2404
[9] Wen J H, Zhao H G, Lv L M, Yuan B, Wang G and Wen X S 2011 J. Acoust. Soc. Am. 130 1201
[10] Xiao Y, Mace B R, Wen J H and Wen X S 2011 Phys. Lett. A 375 1485
[11] Xiao Y, Wen J H and Wen X S 2012 New J. Phys. 14 33042
[12] Shen H J, Paidoussis M P, Wen J H, Yu D L, Cai L and Wen X S 2012 J. Phys. D : Appl. Phys. 45 285401
[13] Li L, Wen J H, Cai L, Zhao H G and Wen X S 2013 Chin. Phys. B 22 14301
[14] Liu Z Y, Chan C T and Sheng P 2005 Phys. Rev. B 71 14103
[15] Liu Z Y, Chan C T and Sheng P 2002 Phys. Rev. B 65 165116
[16] Liu A P, Zhou X M, Liang H G and Hu G K 2012 J. Acoust. Soc. Am. 132 2800
[17] Hu J, Chang Z and Hu G K 2011 Phys. Rev. B 84 201101
[18] Yao S S, Zhou X M and Hu G K 2010 New J. Phys. 12 103025
[19] Wang Y Z, Li F M 2012 Chin. Phys. Lett. 29 034301
[20] Wen J H, Shen H J, Yu D L and Wen X S 2010 Chin. Phys. Lett. 27 114301
[21] Zhao Y J, Qian M L and Chen Q 2010 Chin. Phys. Lett. 27 056201
[22] Thorp O, Ruzzene M and Baz A 2001 Smart Mater. Struct. 10 979
[23] Thorp O, Ruzzene M and Baz A 1990 Smart Mater. Struct. 14 594
[24] Airoldi L and Ruzzene M 2011 New J. Phys. 13 113010
[25] Airoldi L and Ruzzene M 2011 J. Intell. Mater. Syst. Struct. 22 1567
[26] Chen S B, Wen J H, Yu D L, Wang G and Wen X S 2011 Chin. Phys. B 20 14301
[27] Wang G, Wang J W, Chen S B and Wen J H 2011 Smart Mater. Struct. 20 125019
[28] Chen S B, Wen J H, Wang G, Yu D L and Wen X S 2012 J. Intell. Mater. Syst. Struct. 23 1613
[29] Casadei F, Beck B S, Cunefare K A and Ruzzene M 2012 J. Intell. Mater. Syst. Struct. 23 1169
[30] Casadei F, Ruzzene M, Dozio L and Cunefare K A 2010 Smart Mater. Struct. 19 15002
[31] Chen S B, Wen J H, Wang G and Wen X S 2013 Chin. Phys. B 22 74301
[32] Casadei F, Dozio L, Ruzzene M and Cunefare K A 2010 J. Sound Vib. 329 3632
[33] Forward R L 1979 J. Appl. Opt. B 18 690
[34] Hagood N W and von Flotow A 1991 J. Sound Vib. 146 243
[35] Saeed H M and Vestroni F 1998 J. Sound Vib. 213 55
[36] Forward R L ( U.S. Patent) 4 158 787 [1979-06-19]
[37] Neubauer M, Oleskiewicz R, Popp K and Krzyzynski T 2006 J. Sound Vib. 298 84
[38] de Marneffe B and Preumont A 2008 Smart Mater. Struct. 17 35015
[1] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[2] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[3] Formation of ZnGa2O4 films by multilayer deposition and subsequent thermal annealing
Yan Jin-Liang (闫金良), Zhao Yin-Nü (赵银女), Li Chao (李超). Chin. Phys. B, 2014, 23(4): 048105.
[4] Tuning of band-gap of phononic crystals with initial confining pressure
Feng Rong-Xin (冯荣欣), Liu Kai-Xin (刘凯欣). Chin. Phys. B, 2012, 21(12): 126301.
[5] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[6] Investigation of the guided-mode characteristics of hollow-core photonic band-gap fibre with interstitial holes
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064203.
[7] Dispersion characteristics of a slow wave structure with a modified photonic band gap
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Cao Wei-Ping(曹卫平), and Jiang Yan-Nan(姜彦南) . Chin. Phys. B, 2011, 20(3): 030703.
[8] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[9] Excitation of defect modes from the extended photonic band-gap structures of 1D photonic lattices
Zhou Ke-Ya(周可雅), Guo Zhong-Yi(郭忠义), Muhammad Ashfaq Ahmad, and Liu Shu-Tian(刘树田). Chin. Phys. B, 2010, 19(1): 014201.
[10] First-principles investigation of BAs and BxGa1-xAs alloys
Xiong De-Ping(熊德平), Zhou Shou-Li(周守利), Wang Qi(王琦), and Ren Xiao-Min(任晓敏). Chin. Phys. B, 2008, 17(8): 3062-3066.
[11] Improving nucleation in the fabrication of high-quality 3D macro-porous copper film through the surface-modification of a polystyrene colloid-assembled template
Lan Ding(蓝鼎), Wang Yu-Ren(王育人), Yu Yong(于泳), Ma Wen-Jie(马文杰), and Li Cheng(李程). Chin. Phys. B, 2007, 16(2): 468-471.
[12] Efficient photovoltaic cells from low band-gap fluorene-based copolymer
Tian Ren-Yu (田仁玉), Yang Ren-Qiang (阳仁强), Peng Jun-Biao (彭俊彪), Cao Yong (曹镛). Chin. Phys. B, 2005, 14(5): 1032-1035.
No Suggested Reading articles found!