Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070401    DOI: 10.1088/1674-1056/24/7/070401
GENERAL Prev   Next  

Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes

T. Ibungochouba Singh
Department of Mathematics, Manipur University, Canchipur, Imphal, 795003, Manipur, India
Abstract  Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.
Keywords:  Hamilton-Jacobi method      non-stationary Kerr-de Sitter black hole      Hawking radiation      generalized tortoise coordinate transformation  
Received:  10 December 2014      Revised:  04 February 2015      Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Corresponding Authors:  T. Ibungochouba Singh     E-mail:  ibungochouba@rediffmail.com

Cite this article: 

T. Ibungochouba Singh Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes 2015 Chin. Phys. B 24 070401

[1] Hawking S W 1974 Nature 248 30
[2] Hawking S W 1975 Commun. Math. Phys. 43 199
[3] Bekenstein J D 1973 Phys. Rev. D 7 2333
[4] Bekenstein J D 1974 Phys. Rev. D 9 3292
[5] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[6] Kraus P and Wilczek F 1995 Nucl. Phys. B 433 403
[7] Kraus P and Wilczek F 1995 Nucl. Phys. B 437 231
[8] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[9] Hemming S and Keski V E 2001 Phys. Rev. D 64 044006
[10] Medved A J M 2002 Phys. Rev. D 66 124009
[11] Parikh M K 2004 Int. J. Mod.. Phys. D 13 2351
[12] Landau L D and Lifshitz E M 1975 The Classical Theory of Field (New York: Pergamon Press)
[13] Zhang J Y and Zhao Z 2005 J. High. Energy Phys. 10 055
[14] Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173
[15] Zhang J Y and Zhao Z 2006 Phys. Lett. B 638 110
[16] Zhang J Y and Fan J H 2007 Phys. Lett. B 648 133
[17] Angheben M, Nadalani M, Vanzo L and Zerbini S 2005 J. High Energy Phys. 05 014
[18] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
[19] Sannan S 1988 Gen. Rel. Grav. 20 239
[20] Wu S Q and Cai X 2001 Gen. Rel. Grav. 33 1181
[21] Wu S Q and Cai X 2002 Gen. Rel. Grav. 34 605
[22] Hua J A and Huang Y C 2009 Europhys. Lett. 85 30007
[23] Ren J, Zhang L C and Li H F 2010 Gen. Rel. Grav. 42 975
[24] Ibohal N and Ibungochouba T 2011 Astrophys. Space Sci. 333 175
[25] Lan X G 2012 Int. J. Theor. Phys. 51 1195
[26] Lan X G, Jiang Q Q and Wei L F 2012 Eur. Phys. J 72 1983
[27] Ibohal N and Ibungochouba T 2013 Astrophys. Space Sci. 343 471
[28] Hua J C and Huang Y C 2014 Adv. High Energy Phys. 2014 707519
[29] Liang J, Zhang F H, Zhang W and Zhang J 2014 Int. J. Mod. Phys. D 23 1450030
[30] Carter B 1970 Commun. Math. Phys. 17 233
[31] Painleve P 1921 C. R. Hebd. Seances Acad. Sci. 173 677
[32] Xu D Y 1988 Class. Quantum. Grav. 15 153
[33] Zhao Z 1999 The Thermal of Black Holes and the Singularity of the Spacetime (Beijing: Beijing Normal University Press)
[34] Yang J, Zhao Z and Liu W B 2009 Chin. Phys. Lett. 26 120401
[35] Ibungochouba T 2013 Astrophys. Space Sci. 347 271
[36] Page D N 1976 Phys. Rev. D 14 1509
[37] Chandrashekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Clarendon Press)
[38] Yang S Z and Zhao Z 1996 Int. J. Theor. Phys. 35 2455
[39] Lu J 1999 Int. J. Theor. Phys. 38 2029
[40] Ali M H 2004 Gen. Rel. Grav. 36 1171
[1] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[2] Non-equilibrium Landauer transport model for Hawking radiation from a Reissner–Nordstrom black hole
Zeng Xiao-Xiong (曾晓雄), Zhou Shi-Wei (周史薇), Liu Wen-Biao (刘文彪). Chin. Phys. B, 2012, 21(9): 090402.
[3] Discussion on the event horizon and quantum ergosphere of dynamic rotating black holes in a tunneling framework
Liu Bai-Sheng(刘佰生) and Zhang Jing-Yi(张靖仪) . Chin. Phys. B, 2012, 21(7): 070402.
[4] A simpler method for researching fermions tunneling from black holes
Lin Kai(林恺) and Yang Shu-Zheng(杨树政) . Chin. Phys. B, 2011, 20(11): 110403.
[5] Massive particle radiation from Gibbons–Maeda black hole
Fang Heng-Zhong(方恒忠). Chin. Phys. B, 2010, 19(11): 110404.
[6] The relation between a black hole and a general blackbody system
Zhou Shi-Wei(周史薇), Liu Bo(刘博),Huang Ji-Li(黄基利), and Liu Wen-Biao(刘文彪) . Chin. Phys. B, 2010, 19(1): 010403.
[7] A new method of researching fermion tunneling from the Vaidya--Bonner de Sitter black hole
Lin Kai(林恺) and Yang Shu-Zheng(杨树政). Chin. Phys. B, 2009, 18(6): 2154-2158.
[8] Hawking radiation from the charged and magnetized BTZ black hole via covariant anomaly
Zeng Xiao-Xiong(曾晓雄) and Yang Shu-Zheng(杨树政). Chin. Phys. B, 2009, 18(2): 462-467.
[9] On particles tunneling from the Taub-NUT-AdS black hole
Zeng Xiao-Xiong(曾晓雄) and Li Qiang(李强) . Chin. Phys. B, 2009, 18(11): 4716-4720.
[10] Hawking radiation from the dilaton--(anti) de Sitter black hole via covariant anomaly
Han Yi-Wen(韩亦文), Bao Zhi-Qing(包志清), and Hong Yun(洪云). Chin. Phys. B, 2009, 18(1): 62-65.
[11] Hawking radiation from Kerr--Newman de Sitter black hole via anomalies
Lin Kai(林恺), Yang Shu-Zheng(杨树政), and Zeng Xiao-Xiong(曾晓雄). Chin. Phys. B, 2008, 17(8): 2804-2810.
[12] Hawking radiation from Kerr-Newman-Kasuya black hole via quantum anomalies
He Tang-Mei(何唐梅), Fan Jun-Hui(樊军辉), and Wang Yong-Jiu(王永久) . Chin. Phys. B, 2008, 17(6): 2321-2325.
[13] Hawking radiation from gravity's rainbow via gravitational anomaly
Zeng Xiao-Xiong(曾晓雄), Yang Shu-Zheng(杨树政), and Chen De-You(陈德友) . Chin. Phys. B, 2008, 17(5): 1629-1632.
[14] Real scalar field scattering with polynomial approximation around Schwarzschild--de Sitter black-hole
Liu Mo-Lin(刘墨林), Liu Hong-Ya(刘宏亚), Zhang Jing-Fei(张敬飞), and Yu Fei(于飞). Chin. Phys. B, 2008, 17(5): 1633-1639.
[15] Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly
Peng Jun-Jin(彭俊金) and Wu Shuang-Qing(吴双清). Chin. Phys. B, 2008, 17(3): 825-828.
No Suggested Reading articles found!