Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014301    DOI: 10.1088/1674-1056/22/1/014301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials

Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森)
Key Laboratory of Photonic and Phononic Crystal of Ministry of Education, National University of Defense Technology, Changsha 410073, China Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
Abstract  Using the multilayered cylinder model, we study the acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials, which exhibit locally negative effective mass densities. A spring model is introduced to replace the traditional transfer matrix, which may be singular in the negative mass region. The backscattering form function and the scattering cross section are calculated to discuss the acoustic properties of the coated submerged cylindrical shell.
Keywords:  acoustic metamaterials      acoustic scattering      cylindrical shell  
Received:  29 March 2012      Revised:  18 June 2012      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.35.Dm (Sound waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004249 and 11004250).
Corresponding Authors:  Wen Xi-Sen     E-mail:  wenxs@vip.sina.com

Cite this article: 

Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森) Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials 2013 Chin. Phys. B 22 014301

[1] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[2] Fok L, Ambati M and Zhang X 2008 MRS Bullentin 33 931
[3] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nature Mater. 5 452
[4] Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134
[5] Cheng Y, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 051913
[6] Fok L and Zhang X 2011 Phys. Rev. B 83 214304
[7] Ding C L, Zhao X P, Hao L M and Zhu W R 2011 Acta Phys. Sin. 60 044301 (in Chinese)
[8] He Z J, Qiu C Y, Cheng L, Xiao M, Deng K and Liu Z Y 2010 Europhys. Lett. 91 54004
[9] Naify C J, Chang C M, Mcknight G and Nutt S 2010 J. Appl. Phys. 108 114905
[10] Ao X and Chan C T 2008 Phys. Rev. E 77 025601
[11] Zhang S, Yin L L and Fang N 2009 Phys. Rev. Lett. 102 194301
[12] Bobrovnitskii Y I 2008 Acoust. Phys. 54 879
[13] Zhou X M, Hu G K and Lu T J 2008 Phys. Rev. B 77 024101
[14] Bobrovnitskii Y I 2010 New J. Phys. 12 043049
[15] Zhao H G, Liu Y Z, Wen J H, Yu D L, Wang G and Wen X S 2006 Chin. Phys. Lett. 23 2132
[16] Zhao H G, Liu Y Z, Wen J H, Yu D L and Wen X S 2007 Phys. Lett. A 367 224
[17] Zhao H G, Liu Y Z, Yu D L, Wang G, Wen J H and Wen X S 2007 J. Sound Vib. 303 185
[18] Ni Q and Cheng J C 2007 J. Appl. Phys. 101 073515
[19] Zhou X M and Hu G K 2009 Phys. Rev. B 79 195109
[20] Mei J, Liu Z Y, Wen W J and Sheng P 2007 Phys. Rev. B 76 134205
[21] Huang W, Wang Y J and Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742
[22] Wang Y J and Zhu W Y 1996 Chin. Phys. Lett. 13 20
[23] Xi D P 1998 Bessel Functions (Beijing: China Higher Education Press) p. 13
[24] Huang W, Rokhlin S I and Wang Y J 1997 J. Acoust. Soc. Am. 101 2031
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[4] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[5] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[6] Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping
Yuan Li-Yun (袁丽芸), Xiang Yu (向宇), Lu Jing (陆静), Jiang Hong-Hua (蒋红华). Chin. Phys. B, 2015, 24(12): 124301.
[7] Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
Huang Bei(黄蓓), Zhang Yan-Li(张艳丽), Zhang Dong(章东), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2010, 19(5): 054302.
No Suggested Reading articles found!