Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 049701    DOI: 10.1088/1674-1056/20/4/049701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation

Pan Wei-Zhen(潘伟珍),Yang Xue-Jun(杨学军),and Xie Zhi-Kun(谢志堃)
Department of Physics and Electronic Information, Shaoxing University, Shaoxing 312000, China
Abstract  Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour–Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton–Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.
Keywords:  tortoise coordinate transformation      black hole      Hawking effect      quantum nonthermal radiation  
Received:  19 October 2010      Revised:  26 November 2010      Accepted manuscript online: 
PACS:  97.60.Lf (Black holes)  
  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10873003 and 11045005) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6090739).

Cite this article: 

Pan Wei-Zhen(潘伟珍),Yang Xue-Jun(杨学军),and Xie Zhi-Kun(谢志堃) Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation 2011 Chin. Phys. B 20 049701

[1] Hawking S W 1974 Nature 248 30
[2] Hawking S W 1975 Commun. Math. Phys. 43 199
[3] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
[4] Liu L and Xu D Y 1980 Acta Phys. Sin. 29 1617 (in Chinese)
[5] Zhao Z, Gui Y X and Liu L 1981 Acta Astrophys. Sin. 29 141 (in Chinese)
[6] Xu C M and Shen Y G 1982 Acta Phys. Sin. 31 1035 (in Chinese)
[7] Xu D Y 1983 Acta Phys. Sin. 32 225 (in Chinese)
[8] Wu S Q and Cai X 2000 IL Nuovo Cimento B 115 143
[9] Hiscock W A 1981 Phys. Rev. D 23 2823
[10] Balbinot R 1986 Phys. Rev. D 33 1611
[11] Zhao Z 1999 Thermal Properties of Black Holes and Singularities of Space-times (Beijing: Beijing Normal University Press) (in Chinese)
[12] Zhao R, Zhang L C and Li H F 2010 Acta Phys. Sin. 59 2982 (in Chinese)
[13] Qiang L E, Gao X Q and Zhao Z 2004 Acta Phys. Sin. 53 3619 (in Chinese)
[14] Niu Z F and Liu W B 2005 Acta Phys. Sin. 54 475 (in Chinese)
[15] Ren J 2008 J. Beijing Normal University (Natural Science) 44(1) 51 (in Chinese)
[16] Liu W B 2007 Acta Phys. Sin. 56 6164 (in Chinese)
[17] Zhao Z and Dai X X 1991 Chin. Phys. Lett. 8 548
[18] Li Z H and Zhao Z 1993 Chin. Phys. Lett. 10 126
[19] Starobinsky A A1973 JETP 37 28
[20] Unruh W G 1974 Phys. Rev. D 10 3194
[21] Yang S Z and Lin L B 2002 Chin. Phys. 11 619
[22] Lu J L 2002 Acta Phys. Sin. 51 973 (in Chinese)
[23] Yang S Z 2004 Acta Phys. Sin. 53 4007 (in Chinese)
[24] Meng Q M, Wang S, Jiang J J and Deng D L 2008 Chin. Phys. B 17 2811
[25] Zhao Z, Yang J and Liu W B 2010 J. Beijing Normal University (Natural Science) 46(1) 32 (in Chinese)
[1] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[4] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[5] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[6] Destroying MTZ black holes with test particles
Yu Song(宋宇), Hao Tang(唐浩), De-Cheng Zou(邹德成), Cheng-Yi Sun(孙成一), Rui-Hong Yue(岳瑞宏). Chin. Phys. B, 2018, 27(2): 020401.
[7] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[8] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[9] A note on the mass of Kerr-AdS black holes in the off-shell generalized ADT formalism
Yi-De Jing(景艺德), Jun-Jin Peng(彭俊金). Chin. Phys. B, 2017, 26(10): 100401.
[10] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[11] Concrete quantum tunneling spectrum of Schwarzschild black holes
Chen Si-Na (陈斯纳), Zhang Jing-Yi (张靖仪). Chin. Phys. B, 2015, 24(2): 020401.
[12] Thermodynamics of a two-dimensional charged black holein the geometric framework
Han Yi-Wen (韩亦文), Hong Yun (洪云). Chin. Phys. B, 2014, 23(10): 100401.
[13] Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英). Chin. Phys. B, 2013, 22(5): 050402.
[14] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[15] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
No Suggested Reading articles found!