Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056103    DOI: 10.1088/1674-1056/27/5/056103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fine structures of defect cores induced by elastic anisotropy and biaxiality in hybrid alignment nematics

Xuan Zhou(周璇)1, Si-Bo Chen(陈思博)2,3, Zhi-Dong Zhang(张志东)1
1 Department of physics, Hebei University of Technology, Tianjin 300401, China;
2 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China;
3 Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
Abstract  Based on Landau-de Gennes theory and two-dimensional finite-difference iterative method, the spontaneous distortion in hybrid alignment nematic cells with M=±1/2 disclination lines is investigated by establishing two models. The fine structures of defect cores are described in the order space S2/Z2. The joint action of elastic anisotropy (L2/L1) and biaxiality of defects induces the spontaneous twist distortion, accompanied by the movement of the defect center to the upper or lower plate. For each model, four mixed defect structures appear with the same energy, which are defined as energetically degenerated quadruple states.
Keywords:  Landau-de Gennes theory      elastic anisotropy      mixed defects      order space  
Received:  07 February 2018      Revised:  09 March 2018      Accepted manuscript online: 
PACS:  61.30.Jf (Defects in liquid crystals)  
  64.70.M- (Transitions in liquid crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11374087 and 11447179) and the Key Subject Construction Project of Hebei Province University,China.
Corresponding Authors:  Zhi-Dong Zhang     E-mail:  zhidong_zhang1961@163.com

Cite this article: 

Xuan Zhou(周璇), Si-Bo Chen(陈思博), Zhi-Dong Zhang(张志东) Fine structures of defect cores induced by elastic anisotropy and biaxiality in hybrid alignment nematics 2018 Chin. Phys. B 27 056103

[10] Mineev V P 1980 Sov. Sci. Rev. A2 173
[1] Mermin N D 1979 Rev. Mod. Phys. 51 591
[11] Mori H and Nakanishi H 1988 J. Phys. Soc. Jpn. 57 1281
[2] Trebin H R 1982 Adv. Phys. 31 195
[12] Nakanishi H, Hayashi K and Mori H 1988 Commun. Math. Phys. 117 203
[3] Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge:Cambridge University Press)
[13] Zhang C, Grubb A M, Seed A J, Sampson P, Jákli1 A and Lavrentovich O D 2015 Phys. Rev. Lett. 115 087801
[4] Meyer R B 1973 Philos. Mag. 27 405
[14] Wang X G, Kim Y K, Bukusoglu E, Zhang B, Miller D S and Abbott N L 2016 Phys. Rev. Lett. 116 147801
[5] Kléman M and Lavrentovich O D 2003 Soft Matter Physics (New York:Springer-verlag)
[15] Schopohl N and Sluckin T J 1987 Phys. Rev. Lett. 59 2582
[6] Fukuda J I 2010 Phys. Rev. E 81 040701
[7] Kurik M V and Lavrentovich O D 1988 Sov. Phys. Usp. 31 196
[16] Bisi F, Gartland E C, Rosso R and Virga E G 2003 Phys. Rev. E 68 021707
[17] Ambrožič M, Kralj S and Virga E G 2007 Phys. Rev. E 75 031708
[8] Kléman M 1983 Points, Lines and Walls in:Liquid Crystals, Magnetic Systems and Various Disordered Media (New York:Wiley)
[18] Zhou S, Shiyanovskii S V, Park H S and Lavrentovich O D 2017 Nat. Commun. 8 14974
[9] Garel A T 1978 J. Phys. 39 225
[19] De Gennes P G and Prost J 1993 The Physics of Liquid Crystals (UK:Oxford University Press)
[10] Mineev V P 1980 Sov. Sci. Rev. A2 173
[20] Virga E G 1994 Variational Theories for Liquid Crystals (UK:Chap-man Hall)
[11] Mori H and Nakanishi H 1988 J. Phys. Soc. Jpn. 57 1281
[12] Nakanishi H, Hayashi K and Mori H 1988 Commun. Math. Phys. 117 203
[21] Kaiser P, Wiese W and Hess S 2015 J. Non-Equil. Thermody. 17 153
[22] Guzmán O, Abbott N L and de Pablo J J 2005 J. Chem. Phys. 122 184711
[13] Zhang C, Grubb A M, Seed A J, Sampson P, Jákli1 A and Lavrentovich O D 2015 Phys. Rev. Lett. 115 087801
[23] Zhou X and Zhang Z D 2013 Int. J. Mol. Sci. 14 24135
[14] Wang X G, Kim Y K, Bukusoglu E, Zhang B, Miller D S and Abbott N L 2016 Phys. Rev. Lett. 116 147801
[24] Zhou X and Zhang Z D 2014 Liq. Cryst. 41 1219
[15] Schopohl N and Sluckin T J 1987 Phys. Rev. Lett. 59 2582
[25] Zhou X, Zhang Z D, Zhang Q and Ye W J 2015 Materials 8 8072
[16] Bisi F, Gartland E C, Rosso R and Virga E G 2003 Phys. Rev. E 68 021707
[17] Ambrožič M, Kralj S and Virga E G 2007 Phys. Rev. E 75 031708
[26] Qian T Z and Sheng P 1997 Phys. Rev. E 55 7111
[18] Zhou S, Shiyanovskii S V, Park H S and Lavrentovich O D 2017 Nat. Commun. 8 14974
[19] De Gennes P G and Prost J 1993 The Physics of Liquid Crystals (UK:Oxford University Press)
[20] Virga E G 1994 Variational Theories for Liquid Crystals (UK:Chap-man Hall)
[21] Kaiser P, Wiese W and Hess S 2015 J. Non-Equil. Thermody. 17 153
[22] Guzmán O, Abbott N L and de Pablo J J 2005 J. Chem. Phys. 122 184711
[23] Zhou X and Zhang Z D 2013 Int. J. Mol. Sci. 14 24135
[24] Zhou X and Zhang Z D 2014 Liq. Cryst. 41 1219
[25] Zhou X, Zhang Z D, Zhang Q and Ye W J 2015 Materials 8 8072
[26] Qian T Z and Sheng P 1997 Phys. Rev. E 55 7111
[1] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[2] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[3] Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles
Miao Nan-Xi (苗楠茜), Pu Chun-Ying (濮春英), He Chao-Zheng (何朝政), Zhang Fei-Wu (张飞武), Lu Cheng (卢成), Lu Zhi-Wen (卢志文), Zhou Da-Wei (周大伟). Chin. Phys. B, 2014, 23(12): 127101.
[4] A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7
Zhang Wei (张玮), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(6): 066201.
No Suggested Reading articles found!