Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054101    DOI: 10.1088/1674-1056/27/5/054101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of cutting off position of plasma filament formed by two-color femtosecond laser on terahertz generation

Zhan-Qiang Xue(薛占强)1, Li-Ping Shang(尚丽平)1,2, Hu Deng(邓琥)1, Qian-Cheng Zhang(张前成)1, Quan-Cheng Liu(刘泉澄)1, Wei-Wei Qu(屈薇薇)1, Zhan-Feng Li(李占锋)3, Shun-Li Wang(王顺利)1
1 College of Information Engineer, Southwest University of Science and Technology, Mianyang 621010, China;
2 Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621010, China;
3 College of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Femtosecond laser filamentation is a method of generating terahertz, which has wide application in terahertz sub-wavelength resolution imaging. In this paper, the plasma filament formed by femtosecond laser focusing was terminated with an alumina ceramics at different positions and the influence of the cutting off position of the plasma filament on the terahertz wave was studied. The results showed that the terahertz amplitude increases as the position approaches the end of the filament gradually. The stability of amplitude and peak frequency of the terahertz generated by the filament formed by two-color femtosecond laser via a lens with a longer focal length is lower than that through a lens with a shorter focal length, especially the terahertz amplitude at the end of the filament. The study will be helpful for future researchers in the field of THz sub-wavelength imaging utilizing femtosecond laser filament.
Keywords:  terahertz      laser filament  
Received:  20 December 2017      Revised:  27 January 2018      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
Fund: Project supported by the National Defense Basic Scientific Research Program of China (Grant No.Z202013T001) and Postgraduate Innovation Fund Project by Southwest University of Science and Technology,China (Grant No.16ycx104).
Corresponding Authors:  Li-Ping Shang     E-mail:  shangliping@swust.edu.cn

Cite this article: 

Zhan-Qiang Xue(薛占强), Li-Ping Shang(尚丽平), Hu Deng(邓琥), Qian-Cheng Zhang(张前成), Quan-Cheng Liu(刘泉澄), Wei-Wei Qu(屈薇薇), Zhan-Feng Li(李占锋), Shun-Li Wang(王顺利) Influence of cutting off position of plasma filament formed by two-color femtosecond laser on terahertz generation 2018 Chin. Phys. B 27 054101

[12] Li M, Li A Y, He B Q, Yuan S and Zeng H P 2016 Chin. Phys. B 25 044209
[13] Chen W, Guo L X, Li J T and Dan L 2017 Acta Phys. Sin. 66 084102(in Chinese)
[1] Yang H, Zhang J, Zhang Q J, Hao Z Q, Li Y T, Zheng Z Y, Wang Z H, Dong Q L, Lu X, Wei Z Y, Sheng Z M, Yu J and Yu W 2005 Opt. Lett. 30 534
[14] Li N, Bai Y and Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)
[2] Ament C, Polynkin P and Moloney J V 2011 Phys. Rev. Lett. 107 243901
[15] Li S F, Lu C H, Yang C S, Yu Y Z, Sun Z R and Zhang S A 2017 Chin. Phys. B 26 114206
[3] Nomura Y, Shirai H, Kenta I, Tsurumachi N, Voronin A A, Zheltikov A M and Fuji T 2012 Opt. Express 20 24741
[16] D'Amico C, Houard A, Franco M, Prade B Mysyrowicz A, Couairon A and Tikhonchuk V T 2007 Phys. Rev. Lett. 98 23
[4] Bi J, Liu X, Li Y H and Lu P X 2011 Opt. Commun. 284 670
[17] Wang T J, Marceau C, Yuan S, Chen Y, Wang Q, Théberge F, Chateauneuf M, Dubois J and Chin S L 2011 Chin. Laser Phys. Lett. 8 57
[5] Aközbek N, Iwasaki A, Becker A, Scalora M, Chin S L and Bowden C M 2002 Phys. Rev. Lett. 89 143901
[18] Mitryukovskiy S I, Liu Y, Prade B, Houard A and Mysyrowicz A 2015 Laser Physics 24 094009
[6] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A, Hernandez-Garcia C, Plaja L, Becker A, Jaron-Becker A, Murnane M M and Kapteyn H C 2012 Science 336 1287
[19] Gao H, Chu W, Yu G L, Zeng B, Zhao J Y, Wang Z, Liu W W, Cheng Y and Xu Z Z 2013 Opt. Express 21 4612
[7] D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A and Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002
[20] Zhong H, Karpowicz N and Zhang X C 2006 Lasers and Electro-Optics 1-2
[8] Du H W, Chen M, Sheng Z M and Zhang J 2011 Laser & Particle Beams 29 447
[21] Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Cheng Y, Xu Z Z and Liu W W 2014 Lasers and Electro-Optics IEEE 1-2
[9] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[22] Zhao J Y, Chu W, Guo L J, Wang Z, Yang J, Liu W W, Cheng Y and Xu Z Z 2013 Scientific Reports 4 3880
[10] Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
[23] Yan L H, Wang X F, Si J H, Matsuo S, Chen T, Tan W J, Chen F and Hou X 2012 Appl. Phys. Lett. 100 1135
[11] Bartel T, Gaal P, K Reimann, Woerner M and Elsaesser T 2005 Opt. Lett. 30 2805
[12] Li M, Li A Y, He B Q, Yuan S and Zeng H P 2016 Chin. Phys. B 25 044209
[13] Chen W, Guo L X, Li J T and Dan L 2017 Acta Phys. Sin. 66 084102(in Chinese)
[14] Li N, Bai Y and Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)
[15] Li S F, Lu C H, Yang C S, Yu Y Z, Sun Z R and Zhang S A 2017 Chin. Phys. B 26 114206
[16] D'Amico C, Houard A, Franco M, Prade B Mysyrowicz A, Couairon A and Tikhonchuk V T 2007 Phys. Rev. Lett. 98 23
[17] Wang T J, Marceau C, Yuan S, Chen Y, Wang Q, Théberge F, Chateauneuf M, Dubois J and Chin S L 2011 Chin. Laser Phys. Lett. 8 57
[18] Mitryukovskiy S I, Liu Y, Prade B, Houard A and Mysyrowicz A 2015 Laser Physics 24 094009
[19] Gao H, Chu W, Yu G L, Zeng B, Zhao J Y, Wang Z, Liu W W, Cheng Y and Xu Z Z 2013 Opt. Express 21 4612
[20] Zhong H, Karpowicz N and Zhang X C 2006 Lasers and Electro-Optics 1-2
[21] Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Cheng Y, Xu Z Z and Liu W W 2014 Lasers and Electro-Optics IEEE 1-2
[22] Zhao J Y, Chu W, Guo L J, Wang Z, Yang J, Liu W W, Cheng Y and Xu Z Z 2013 Scientific Reports 4 3880
[23] Yan L H, Wang X F, Si J H, Matsuo S, Chen T, Tan W J, Chen F and Hou X 2012 Appl. Phys. Lett. 100 1135
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!